Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/pandas/_libs/arrays.pyx

184 lines
5.7 KiB
Cython
Raw Normal View History

2023-09-20 19:46:58 +02:00
"""
Cython implementations for internal ExtensionArrays.
"""
cimport cython
import numpy as np
cimport numpy as cnp
from cpython cimport PyErr_Clear
from numpy cimport ndarray
cnp.import_array()
@cython.freelist(16)
cdef class NDArrayBacked:
"""
Implementing these methods in cython improves performance quite a bit.
import pandas as pd
from pandas._libs.arrays import NDArrayBacked as cls
dti = pd.date_range("2016-01-01", periods=3)
dta = dti._data
arr = dta._ndarray
obj = cls._simple_new(arr, arr.dtype)
# for foo in [arr, dta, obj]: ...
%timeit foo.copy()
299 ns ± 30 ns per loop # <-- arr underlying ndarray (for reference)
530 ns ± 9.24 ns per loop # <-- dta with cython NDArrayBacked
1.66 µs ± 46.3 ns per loop # <-- dta without cython NDArrayBacked
328 ns ± 5.29 ns per loop # <-- obj with NDArrayBacked.__cinit__
371 ns ± 6.97 ns per loop # <-- obj with NDArrayBacked._simple_new
%timeit foo.T
125 ns ± 6.27 ns per loop # <-- arr underlying ndarray (for reference)
226 ns ± 7.66 ns per loop # <-- dta with cython NDArrayBacked
911 ns ± 16.6 ns per loop # <-- dta without cython NDArrayBacked
215 ns ± 4.54 ns per loop # <-- obj with NDArrayBacked._simple_new
"""
# TODO: implement take in terms of cnp.PyArray_TakeFrom
# TODO: implement concat_same_type in terms of cnp.PyArray_Concatenate
# cdef:
# readonly ndarray _ndarray
# readonly object _dtype
def __init__(self, ndarray values, object dtype):
self._ndarray = values
self._dtype = dtype
@classmethod
def _simple_new(cls, ndarray values, object dtype):
cdef:
NDArrayBacked obj
obj = NDArrayBacked.__new__(cls)
obj._ndarray = values
obj._dtype = dtype
return obj
cpdef NDArrayBacked _from_backing_data(self, ndarray values):
"""
Construct a new ExtensionArray `new_array` with `arr` as its _ndarray.
This should round-trip:
self == self._from_backing_data(self._ndarray)
"""
# TODO: re-reuse simple_new if/when it can be cpdef
cdef:
NDArrayBacked obj
obj = NDArrayBacked.__new__(type(self))
obj._ndarray = values
obj._dtype = self._dtype
return obj
cpdef __setstate__(self, state):
if isinstance(state, dict):
if "_data" in state:
data = state.pop("_data")
elif "_ndarray" in state:
data = state.pop("_ndarray")
else:
raise ValueError # pragma: no cover
self._ndarray = data
self._dtype = state.pop("_dtype")
for key, val in state.items():
setattr(self, key, val)
elif isinstance(state, tuple):
if len(state) != 3:
if len(state) == 1 and isinstance(state[0], dict):
self.__setstate__(state[0])
return
raise NotImplementedError(state) # pragma: no cover
data, dtype = state[:2]
if isinstance(dtype, np.ndarray):
dtype, data = data, dtype
self._ndarray = data
self._dtype = dtype
if isinstance(state[2], dict):
for key, val in state[2].items():
setattr(self, key, val)
else:
raise NotImplementedError(state) # pragma: no cover
else:
raise NotImplementedError(state) # pragma: no cover
def __len__(self) -> int:
return len(self._ndarray)
@property
def shape(self):
# object cast bc _ndarray.shape is npy_intp*
return (<object>(self._ndarray)).shape
@property
def ndim(self) -> int:
return self._ndarray.ndim
@property
def size(self) -> int:
return self._ndarray.size
@property
def nbytes(self) -> int:
return self._ndarray.nbytes
def copy(self, order="C"):
cdef:
cnp.NPY_ORDER order_code
int success
success = cnp.PyArray_OrderConverter(order, &order_code)
if not success:
# clear exception so that we don't get a SystemError
PyErr_Clear()
# same message used by numpy
msg = f"order must be one of 'C', 'F', 'A', or 'K' (got '{order}')"
raise ValueError(msg)
res_values = cnp.PyArray_NewCopy(self._ndarray, order_code)
return self._from_backing_data(res_values)
def delete(self, loc, axis=0):
res_values = np.delete(self._ndarray, loc, axis=axis)
return self._from_backing_data(res_values)
def swapaxes(self, axis1, axis2):
res_values = cnp.PyArray_SwapAxes(self._ndarray, axis1, axis2)
return self._from_backing_data(res_values)
# TODO: pass NPY_MAXDIMS equiv to axis=None?
def repeat(self, repeats, axis: int | np.integer = 0):
if axis is None:
axis = 0
res_values = cnp.PyArray_Repeat(self._ndarray, repeats, <int>axis)
return self._from_backing_data(res_values)
def reshape(self, *args, **kwargs):
res_values = self._ndarray.reshape(*args, **kwargs)
return self._from_backing_data(res_values)
def ravel(self, order="C"):
# cnp.PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order)
# res_values = cnp.PyArray_Ravel(self._ndarray, order)
res_values = self._ndarray.ravel(order)
return self._from_backing_data(res_values)
@property
def T(self):
res_values = self._ndarray.T
return self._from_backing_data(res_values)
def transpose(self, *axes):
res_values = self._ndarray.transpose(*axes)
return self._from_backing_data(res_values)