Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/sklearn/_loss/link.py
2023-09-20 19:46:58 +02:00

262 lines
7.5 KiB
Python

"""
Module contains classes for invertible (and differentiable) link functions.
"""
# Author: Christian Lorentzen <lorentzen.ch@gmail.com>
from abc import ABC, abstractmethod
from dataclasses import dataclass
import numpy as np
from scipy.special import expit, logit
from scipy.stats import gmean
from ..utils.extmath import softmax
@dataclass
class Interval:
low: float
high: float
low_inclusive: bool
high_inclusive: bool
def __post_init__(self):
"""Check that low <= high"""
if self.low > self.high:
raise ValueError(
f"One must have low <= high; got low={self.low}, high={self.high}."
)
def includes(self, x):
"""Test whether all values of x are in interval range.
Parameters
----------
x : ndarray
Array whose elements are tested to be in interval range.
Returns
-------
result : bool
"""
if self.low_inclusive:
low = np.greater_equal(x, self.low)
else:
low = np.greater(x, self.low)
if not np.all(low):
return False
if self.high_inclusive:
high = np.less_equal(x, self.high)
else:
high = np.less(x, self.high)
# Note: np.all returns numpy.bool_
return bool(np.all(high))
def _inclusive_low_high(interval, dtype=np.float64):
"""Generate values low and high to be within the interval range.
This is used in tests only.
Returns
-------
low, high : tuple
The returned values low and high lie within the interval.
"""
eps = 10 * np.finfo(dtype).eps
if interval.low == -np.inf:
low = -1e10
elif interval.low < 0:
low = interval.low * (1 - eps) + eps
else:
low = interval.low * (1 + eps) + eps
if interval.high == np.inf:
high = 1e10
elif interval.high < 0:
high = interval.high * (1 + eps) - eps
else:
high = interval.high * (1 - eps) - eps
return low, high
class BaseLink(ABC):
"""Abstract base class for differentiable, invertible link functions.
Convention:
- link function g: raw_prediction = g(y_pred)
- inverse link h: y_pred = h(raw_prediction)
For (generalized) linear models, `raw_prediction = X @ coef` is the so
called linear predictor, and `y_pred = h(raw_prediction)` is the predicted
conditional (on X) expected value of the target `y_true`.
The methods are not implemented as staticmethods in case a link function needs
parameters.
"""
is_multiclass = False # used for testing only
# Usually, raw_prediction may be any real number and y_pred is an open
# interval.
# interval_raw_prediction = Interval(-np.inf, np.inf, False, False)
interval_y_pred = Interval(-np.inf, np.inf, False, False)
@abstractmethod
def link(self, y_pred, out=None):
"""Compute the link function g(y_pred).
The link function maps (predicted) target values to raw predictions,
i.e. `g(y_pred) = raw_prediction`.
Parameters
----------
y_pred : array
Predicted target values.
out : array
A location into which the result is stored. If provided, it must
have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned.
Returns
-------
out : array
Output array, element-wise link function.
"""
@abstractmethod
def inverse(self, raw_prediction, out=None):
"""Compute the inverse link function h(raw_prediction).
The inverse link function maps raw predictions to predicted target
values, i.e. `h(raw_prediction) = y_pred`.
Parameters
----------
raw_prediction : array
Raw prediction values (in link space).
out : array
A location into which the result is stored. If provided, it must
have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned.
Returns
-------
out : array
Output array, element-wise inverse link function.
"""
class IdentityLink(BaseLink):
"""The identity link function g(x)=x."""
def link(self, y_pred, out=None):
if out is not None:
np.copyto(out, y_pred)
return out
else:
return y_pred
inverse = link
class LogLink(BaseLink):
"""The log link function g(x)=log(x)."""
interval_y_pred = Interval(0, np.inf, False, False)
def link(self, y_pred, out=None):
return np.log(y_pred, out=out)
def inverse(self, raw_prediction, out=None):
return np.exp(raw_prediction, out=out)
class LogitLink(BaseLink):
"""The logit link function g(x)=logit(x)."""
interval_y_pred = Interval(0, 1, False, False)
def link(self, y_pred, out=None):
return logit(y_pred, out=out)
def inverse(self, raw_prediction, out=None):
return expit(raw_prediction, out=out)
class MultinomialLogit(BaseLink):
"""The symmetric multinomial logit function.
Convention:
- y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
Notes:
- The inverse link h is the softmax function.
- The sum is over the second axis, i.e. axis=1 (n_classes).
We have to choose additional constraints in order to make
y_pred[k] = exp(raw_pred[k]) / sum(exp(raw_pred[k]), k=0..n_classes-1)
for n_classes classes identifiable and invertible.
We choose the symmetric side constraint where the geometric mean response
is set as reference category, see [2]:
The symmetric multinomial logit link function for a single data point is
then defined as
raw_prediction[k] = g(y_pred[k]) = log(y_pred[k]/gmean(y_pred))
= log(y_pred[k]) - mean(log(y_pred)).
Note that this is equivalent to the definition in [1] and implies mean
centered raw predictions:
sum(raw_prediction[k], k=0..n_classes-1) = 0.
For linear models with raw_prediction = X @ coef, this corresponds to
sum(coef[k], k=0..n_classes-1) = 0, i.e. the sum over classes for every
feature is zero.
Reference
---------
.. [1] Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert. "Additive
logistic regression: a statistical view of boosting" Ann. Statist.
28 (2000), no. 2, 337--407. doi:10.1214/aos/1016218223.
https://projecteuclid.org/euclid.aos/1016218223
.. [2] Zahid, Faisal Maqbool and Gerhard Tutz. "Ridge estimation for
multinomial logit models with symmetric side constraints."
Computational Statistics 28 (2013): 1017-1034.
http://epub.ub.uni-muenchen.de/11001/1/tr067.pdf
"""
is_multiclass = True
interval_y_pred = Interval(0, 1, False, False)
def symmetrize_raw_prediction(self, raw_prediction):
return raw_prediction - np.mean(raw_prediction, axis=1)[:, np.newaxis]
def link(self, y_pred, out=None):
# geometric mean as reference category
gm = gmean(y_pred, axis=1)
return np.log(y_pred / gm[:, np.newaxis], out=out)
def inverse(self, raw_prediction, out=None):
if out is None:
return softmax(raw_prediction, copy=True)
else:
np.copyto(out, raw_prediction)
softmax(out, copy=False)
return out
_LINKS = {
"identity": IdentityLink,
"log": LogLink,
"logit": LogitLink,
"multinomial_logit": MultinomialLogit,
}