Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/sklearn/svm/_bounds.py
2023-09-20 19:46:58 +02:00

86 lines
2.8 KiB
Python

"""Determination of parameter bounds"""
# Author: Paolo Losi
# License: BSD 3 clause
from numbers import Real
import numpy as np
from ..preprocessing import LabelBinarizer
from ..utils.validation import check_consistent_length, check_array
from ..utils.extmath import safe_sparse_dot
from ..utils._param_validation import StrOptions, Interval, validate_params
@validate_params(
{
"X": ["array-like", "sparse matrix"],
"y": ["array-like"],
"loss": [StrOptions({"squared_hinge", "log"})],
"fit_intercept": ["boolean"],
"intercept_scaling": [Interval(Real, 0, None, closed="neither")],
}
)
def l1_min_c(X, y, *, loss="squared_hinge", fit_intercept=True, intercept_scaling=1.0):
"""Return the lowest bound for C.
The lower bound for C is computed such that for C in (l1_min_C, infinity)
the model is guaranteed not to be empty. This applies to l1 penalized
classifiers, such as LinearSVC with penalty='l1' and
linear_model.LogisticRegression with penalty='l1'.
This value is valid if class_weight parameter in fit() is not set.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target vector relative to X.
loss : {'squared_hinge', 'log'}, default='squared_hinge'
Specifies the loss function.
With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).
With 'log' it is the loss of logistic regression models.
fit_intercept : bool, default=True
Specifies if the intercept should be fitted by the model.
It must match the fit() method parameter.
intercept_scaling : float, default=1.0
When fit_intercept is True, instance vector x becomes
[x, intercept_scaling],
i.e. a "synthetic" feature with constant value equals to
intercept_scaling is appended to the instance vector.
It must match the fit() method parameter.
Returns
-------
l1_min_c : float
Minimum value for C.
"""
X = check_array(X, accept_sparse="csc")
check_consistent_length(X, y)
Y = LabelBinarizer(neg_label=-1).fit_transform(y).T
# maximum absolute value over classes and features
den = np.max(np.abs(safe_sparse_dot(Y, X)))
if fit_intercept:
bias = np.full(
(np.size(y), 1), intercept_scaling, dtype=np.array(intercept_scaling).dtype
)
den = max(den, abs(np.dot(Y, bias)).max())
if den == 0.0:
raise ValueError(
"Ill-posed l1_min_c calculation: l1 will always "
"select zero coefficients for this data"
)
if loss == "squared_hinge":
return 0.5 / den
else: # loss == 'log':
return 2.0 / den