Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/scipy/linalg/blas.py
2023-09-20 19:46:58 +02:00

485 lines
11 KiB
Python

"""
Low-level BLAS functions (:mod:`scipy.linalg.blas`)
===================================================
This module contains low-level functions from the BLAS library.
.. versionadded:: 0.12.0
.. note::
The common ``overwrite_<>`` option in many routines, allows the
input arrays to be overwritten to avoid extra memory allocation.
However this requires the array to satisfy two conditions
which are memory order and the data type to match exactly the
order and the type expected by the routine.
As an example, if you pass a double precision float array to any
``S....`` routine which expects single precision arguments, f2py
will create an intermediate array to match the argument types and
overwriting will be performed on that intermediate array.
Similarly, if a C-contiguous array is passed, f2py will pass a
FORTRAN-contiguous array internally. Please make sure that these
details are satisfied. More information can be found in the f2py
documentation.
.. warning::
These functions do little to no error checking.
It is possible to cause crashes by mis-using them,
so prefer using the higher-level routines in `scipy.linalg`.
Finding functions
-----------------
.. autosummary::
:toctree: generated/
get_blas_funcs
find_best_blas_type
BLAS Level 1 functions
----------------------
.. autosummary::
:toctree: generated/
caxpy
ccopy
cdotc
cdotu
crotg
cscal
csrot
csscal
cswap
dasum
daxpy
dcopy
ddot
dnrm2
drot
drotg
drotm
drotmg
dscal
dswap
dzasum
dznrm2
icamax
idamax
isamax
izamax
sasum
saxpy
scasum
scnrm2
scopy
sdot
snrm2
srot
srotg
srotm
srotmg
sscal
sswap
zaxpy
zcopy
zdotc
zdotu
zdrot
zdscal
zrotg
zscal
zswap
BLAS Level 2 functions
----------------------
.. autosummary::
:toctree: generated/
sgbmv
sgemv
sger
ssbmv
sspr
sspr2
ssymv
ssyr
ssyr2
stbmv
stpsv
strmv
strsv
dgbmv
dgemv
dger
dsbmv
dspr
dspr2
dsymv
dsyr
dsyr2
dtbmv
dtpsv
dtrmv
dtrsv
cgbmv
cgemv
cgerc
cgeru
chbmv
chemv
cher
cher2
chpmv
chpr
chpr2
ctbmv
ctbsv
ctpmv
ctpsv
ctrmv
ctrsv
csyr
zgbmv
zgemv
zgerc
zgeru
zhbmv
zhemv
zher
zher2
zhpmv
zhpr
zhpr2
ztbmv
ztbsv
ztpmv
ztrmv
ztrsv
zsyr
BLAS Level 3 functions
----------------------
.. autosummary::
:toctree: generated/
sgemm
ssymm
ssyr2k
ssyrk
strmm
strsm
dgemm
dsymm
dsyr2k
dsyrk
dtrmm
dtrsm
cgemm
chemm
cher2k
cherk
csymm
csyr2k
csyrk
ctrmm
ctrsm
zgemm
zhemm
zher2k
zherk
zsymm
zsyr2k
zsyrk
ztrmm
ztrsm
"""
#
# Author: Pearu Peterson, March 2002
# refactoring by Fabian Pedregosa, March 2010
#
__all__ = ['get_blas_funcs', 'find_best_blas_type']
import numpy as _np
import functools
from scipy.linalg import _fblas
try:
from scipy.linalg import _cblas
except ImportError:
_cblas = None
try:
from scipy.linalg import _fblas_64
HAS_ILP64 = True
except ImportError:
HAS_ILP64 = False
_fblas_64 = None
# Expose all functions (only fblas --- cblas is an implementation detail)
empty_module = None
from scipy.linalg._fblas import *
del empty_module
# all numeric dtypes '?bBhHiIlLqQefdgFDGO' that are safe to be converted to
# single precision float : '?bBhH!!!!!!ef!!!!!!'
# double precision float : '?bBhHiIlLqQefdg!!!!'
# single precision complex : '?bBhH!!!!!!ef!!F!!!'
# double precision complex : '?bBhHiIlLqQefdgFDG!'
_type_score = {x: 1 for x in '?bBhHef'}
_type_score.update({x: 2 for x in 'iIlLqQd'})
# Handle float128(g) and complex256(G) separately in case non-Windows systems.
# On Windows, the values will be rewritten to the same key with the same value.
_type_score.update({'F': 3, 'D': 4, 'g': 2, 'G': 4})
# Final mapping to the actual prefixes and dtypes
_type_conv = {1: ('s', _np.dtype('float32')),
2: ('d', _np.dtype('float64')),
3: ('c', _np.dtype('complex64')),
4: ('z', _np.dtype('complex128'))}
# some convenience alias for complex functions
_blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2',
'cdot': 'cdotc', 'zdot': 'zdotc',
'cger': 'cgerc', 'zger': 'zgerc',
'sdotc': 'sdot', 'sdotu': 'sdot',
'ddotc': 'ddot', 'ddotu': 'ddot'}
def find_best_blas_type(arrays=(), dtype=None):
"""Find best-matching BLAS/LAPACK type.
Arrays are used to determine the optimal prefix of BLAS routines.
Parameters
----------
arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of BLAS
routines. If not given, double-precision routines will be
used, otherwise the most generic type in arrays will be used.
dtype : str or dtype, optional
Data-type specifier. Not used if `arrays` is non-empty.
Returns
-------
prefix : str
BLAS/LAPACK prefix character.
dtype : dtype
Inferred Numpy data type.
prefer_fortran : bool
Whether to prefer Fortran order routines over C order.
Examples
--------
>>> import numpy as np
>>> import scipy.linalg.blas as bla
>>> rng = np.random.default_rng()
>>> a = rng.random((10,15))
>>> b = np.asfortranarray(a) # Change the memory layout order
>>> bla.find_best_blas_type((a,))
('d', dtype('float64'), False)
>>> bla.find_best_blas_type((a*1j,))
('z', dtype('complex128'), False)
>>> bla.find_best_blas_type((b,))
('d', dtype('float64'), True)
"""
dtype = _np.dtype(dtype)
max_score = _type_score.get(dtype.char, 5)
prefer_fortran = False
if arrays:
# In most cases, single element is passed through, quicker route
if len(arrays) == 1:
max_score = _type_score.get(arrays[0].dtype.char, 5)
prefer_fortran = arrays[0].flags['FORTRAN']
else:
# use the most generic type in arrays
scores = [_type_score.get(x.dtype.char, 5) for x in arrays]
max_score = max(scores)
ind_max_score = scores.index(max_score)
# safe upcasting for mix of float64 and complex64 --> prefix 'z'
if max_score == 3 and (2 in scores):
max_score = 4
if arrays[ind_max_score].flags['FORTRAN']:
# prefer Fortran for leading array with column major order
prefer_fortran = True
# Get the LAPACK prefix and the corresponding dtype if not fall back
# to 'd' and double precision float.
prefix, dtype = _type_conv.get(max_score, ('d', _np.dtype('float64')))
return prefix, dtype, prefer_fortran
def _get_funcs(names, arrays, dtype,
lib_name, fmodule, cmodule,
fmodule_name, cmodule_name, alias,
ilp64=False):
"""
Return available BLAS/LAPACK functions.
Used also in lapack.py. See get_blas_funcs for docstring.
"""
funcs = []
unpack = False
dtype = _np.dtype(dtype)
module1 = (cmodule, cmodule_name)
module2 = (fmodule, fmodule_name)
if isinstance(names, str):
names = (names,)
unpack = True
prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype)
if prefer_fortran:
module1, module2 = module2, module1
for name in names:
func_name = prefix + name
func_name = alias.get(func_name, func_name)
func = getattr(module1[0], func_name, None)
module_name = module1[1]
if func is None:
func = getattr(module2[0], func_name, None)
module_name = module2[1]
if func is None:
raise ValueError(
'%s function %s could not be found' % (lib_name, func_name))
func.module_name, func.typecode = module_name, prefix
func.dtype = dtype
if not ilp64:
func.int_dtype = _np.dtype(_np.intc)
else:
func.int_dtype = _np.dtype(_np.int64)
func.prefix = prefix # Backward compatibility
funcs.append(func)
if unpack:
return funcs[0]
else:
return funcs
def _memoize_get_funcs(func):
"""
Memoized fast path for _get_funcs instances
"""
memo = {}
func.memo = memo
@functools.wraps(func)
def getter(names, arrays=(), dtype=None, ilp64=False):
key = (names, dtype, ilp64)
for array in arrays:
# cf. find_blas_funcs
key += (array.dtype.char, array.flags.fortran)
try:
value = memo.get(key)
except TypeError:
# unhashable key etc.
key = None
value = None
if value is not None:
return value
value = func(names, arrays, dtype, ilp64)
if key is not None:
memo[key] = value
return value
return getter
@_memoize_get_funcs
def get_blas_funcs(names, arrays=(), dtype=None, ilp64=False):
"""Return available BLAS function objects from names.
Arrays are used to determine the optimal prefix of BLAS routines.
Parameters
----------
names : str or sequence of str
Name(s) of BLAS functions without type prefix.
arrays : sequence of ndarrays, optional
Arrays can be given to determine optimal prefix of BLAS
routines. If not given, double-precision routines will be
used, otherwise the most generic type in arrays will be used.
dtype : str or dtype, optional
Data-type specifier. Not used if `arrays` is non-empty.
ilp64 : {True, False, 'preferred'}, optional
Whether to return ILP64 routine variant.
Choosing 'preferred' returns ILP64 routine if available,
and otherwise the 32-bit routine. Default: False
Returns
-------
funcs : list
List containing the found function(s).
Notes
-----
This routine automatically chooses between Fortran/C
interfaces. Fortran code is used whenever possible for arrays with
column major order. In all other cases, C code is preferred.
In BLAS, the naming convention is that all functions start with a
type prefix, which depends on the type of the principal
matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy
types {float32, float64, complex64, complex128} respectively.
The code and the dtype are stored in attributes `typecode` and `dtype`
of the returned functions.
Examples
--------
>>> import numpy as np
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((3,2))
>>> x_gemv = LA.get_blas_funcs('gemv', (a,))
>>> x_gemv.typecode
'd'
>>> x_gemv = LA.get_blas_funcs('gemv',(a*1j,))
>>> x_gemv.typecode
'z'
"""
if isinstance(ilp64, str):
if ilp64 == 'preferred':
ilp64 = HAS_ILP64
else:
raise ValueError("Invalid value for 'ilp64'")
if not ilp64:
return _get_funcs(names, arrays, dtype,
"BLAS", _fblas, _cblas, "fblas", "cblas",
_blas_alias, ilp64=False)
else:
if not HAS_ILP64:
raise RuntimeError("BLAS ILP64 routine requested, but Scipy "
"compiled only with 32-bit BLAS")
return _get_funcs(names, arrays, dtype,
"BLAS", _fblas_64, None, "fblas_64", None,
_blas_alias, ilp64=True)