DL_TRANSFORMER/transformer5.ipynb
2024-06-08 15:52:20 +02:00

12 KiB

Importy

from transformers import pipeline
import re
from tqdm import tqdm
import pandas as pd

Initializacja modelu NER

nlp = pipeline("ner", model = 'dbmdz/bert-large-cased-finetuned-conll03-english')
No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and revision f2482bf (https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english).
Using a pipeline without specifying a model name and revision in production is not recommended.
C:\Users\adamw\PycharmProjects\pythonProject\venv\lib\site-packages\huggingface_hub\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
  warnings.warn(
Some weights of the model checkpoint at dbmdz/bert-large-cased-finetuned-conll03-english were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

Metody do tokenizacji

def get_word_indices(string_to_search):
    pattern = "\s\S"
    matches = re.finditer(pattern, string_to_search)
    indices = [m.start(0) + 1 for m in matches]
    if not string_to_search[0].isspace():
        indices.insert(0, 0)
    return sorted(indices)

def get_word_beginning(string_to_search, letter_index):
    while letter_index > 0 and string_to_search[letter_index - 1] != " ":
        letter_index -= 1
    return letter_index

def wordpiece_tokenization(ner_tokenized, original_sentence):
    word_start_index_to_tag = {}
    formatted_results = []
    previous_tag = "O"

    for result in ner_tokenized:
        word = result["word"].replace("##", "")
        start, end = result["start"], result["start"] + len(word)

        if formatted_results and (original_sentence[result["start"] - 1] != " " or result["word"].startswith("##")):
            formatted_results[-1]["end"] = end
            formatted_results[-1]["word"] += word
        else:
            result["word"] = word
            result["start"] = get_word_beginning(original_sentence, start)
            result["end"] = end
            formatted_results.append(result)

    for result in formatted_results:
        start_index = result["start"]
        tag = result["entity"]

        if tag != "O":
            if previous_tag != tag:
                tag = f"B-{tag.split('-')[-1]}"
            else:
                tag = f"I-{tag.split('-')[-1]}"
        word_start_index_to_tag[start_index] = tag
        previous_tag = result["entity"]

    for index in get_word_indices(original_sentence):
        word_start_index_to_tag.setdefault(index, "O")

    return [word_start_index_to_tag[index] for index in sorted(word_start_index_to_tag.keys())]

Tokenizacja plików

def tokenize_file(input_file, output_file):
    with open(input_file, "r", encoding="utf-8") as f:
        original_sentences = f.readlines()

    processed_data = []
    for raw_sentence in tqdm(original_sentences, desc=f"Processing {input_file}"):
        model_out = nlp(raw_sentence.strip())
        word_tokenization = wordpiece_tokenization(model_out, raw_sentence.strip())
        processed_line = " ".join(word_tokenization)
        processed_data.append(processed_line)

    with open(output_file, "w", encoding="utf-8") as f:
        for line in processed_data:
            f.write(f"{line}\n")

Ewaluacja

tokenize_file("dev-0/in.tsv", "dev-0/out.tsv")
Processing dev-0/in.tsv: 100%|██████████| 215/215 [03:28<00:00,  1.03it/s]
tokenize_file("test-A/in.tsv", "test-A/out.tsv")
Processing test-A/in.tsv: 100%|██████████| 230/230 [03:42<00:00,  1.03it/s]

Poprawienie etykiet

def correct_labels(input_file, output_file):
    df = pd.read_csv(input_file, sep="\t", names=["Text"])

    corrected_lines = []

    for line in df["Text"]:
        tokens = line.split(" ")
        corrected_tokens = []
        previous_token = "O"

        for token in tokens:
            if (
                token == "I-ORG"
                and previous_token != "B-ORG"
                and previous_token != "I-ORG"
            ):
                corrected_tokens.append("B-ORG")
            elif (
                token == "I-PER"
                and previous_token != "B-PER"
                and previous_token != "I-PER"
            ):
                corrected_tokens.append("B-PER")
            elif (
                token == "I-LOC"
                and previous_token != "B-LOC"
                and previous_token != "I-LOC"
            ):
                corrected_tokens.append("B-LOC")
            elif (
                token == "I-MISC"
                and previous_token != "B-MISC"
                and previous_token != "I-MISC"
            ):
                corrected_tokens.append("B-MISC")
            else:
                corrected_tokens.append(token)

            previous_token = token

        corrected_line = " ".join(corrected_tokens)
        corrected_lines.append(corrected_line)

    df["Text"] = corrected_lines
    df.to_csv(output_file, sep="\t", index=False, header=False)
input_file = "test-A/out.tsv"
output_file = "test-A/out.tsv"
correct_labels(input_file, output_file)
input_file = "dev-0/out.tsv"
output_file = "dev-0/out.tsv"
correct_labels(input_file, output_file)

Obliczenie dokładności

def calculate_accuracy(input_file, expected_file):
    with open(input_file, "r", encoding="utf-8") as f:
        original_sentences = f.readlines()

    with open(expected_file, "r", encoding="utf-8") as f:
        expected_tags = f.readlines()

    total_tags = 0
    correct_tags = 0

    for raw_sentence, expected_line in tqdm(zip(original_sentences, expected_tags), desc=f"Processing {input_file}", total=len(original_sentences)):
        model_out = nlp(raw_sentence.strip())
        word_tokenization = wordpiece_tokenization(model_out, raw_sentence.strip())
        expected_tags_list = expected_line.strip().split()

        total_tags += len(expected_tags_list)
        correct_tags += sum(p == e for p, e in zip(word_tokenization, expected_tags_list))

    accuracy = correct_tags / total_tags
    print(f"Accuracy: {accuracy:.4f}")

calculate_accuracy("dev-0/in.tsv", "dev-0/expected.tsv")
Processing dev-0/in.tsv: 100%|██████████| 215/215 [03:36<00:00,  1.01s/it]
Accuracy: 0.9236