Compare commits
1 Commits
master
...
evaluation
Author | SHA1 | Date | |
---|---|---|---|
|
850263b3b8 |
@ -1,18 +1,18 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
test_data = pd.read_csv('./beer_reviews_test.csv')
|
||||
X_test = test_data[['review_aroma', 'review_appearance', 'review_palate', 'review_taste']]
|
||||
y_test = test_data['review_overall']
|
||||
|
||||
model = tf.keras.models.load_model('beer_review_sentiment_model.h5')
|
||||
|
||||
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=10000)
|
||||
predictions = model.predict(X_test)
|
||||
|
||||
print(f'Predictions shape: {predictions.shape}')
|
||||
|
||||
X_test_seq = tokenizer.texts_to_sequences(X_test)
|
||||
X_test_pad = tf.keras.preprocessing.sequence.pad_sequences(X_test_seq, maxlen=100)
|
||||
if len(predictions.shape) > 1:
|
||||
predictions = predictions[:, 0]
|
||||
|
||||
predictions = model.predict(X_test_pad)
|
||||
|
||||
np.savetxt('beer_review_sentiment_predictions.csv', predictions, delimiter=',', fmt='%.10f')
|
||||
results = pd.DataFrame({'Predictions': predictions, 'Actual': y_test})
|
||||
results.to_csv('beer_review_sentiment_predictions.csv', index=False)
|
24
IUM_06-metrics.py
Normal file
24
IUM_06-metrics.py
Normal file
@ -0,0 +1,24 @@
|
||||
import pandas as pd
|
||||
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, mean_squared_error
|
||||
from math import sqrt
|
||||
import sys
|
||||
|
||||
data = pd.read_csv('beer_review_sentiment_predictions.csv')
|
||||
y_pred = data['Predictions']
|
||||
y_test = data['Actual']
|
||||
y_test_binary = (y_test >= 3).astype(int)
|
||||
|
||||
build_number = sys.argv[1]
|
||||
|
||||
accuracy = accuracy_score(y_test_binary, y_pred.round())
|
||||
precision, recall, f1, _ = precision_recall_fscore_support(y_test_binary, y_pred.round(), average='micro')
|
||||
rmse = sqrt(mean_squared_error(y_test, y_pred))
|
||||
|
||||
print(f'Accuracy: {accuracy}')
|
||||
print(f'Micro-avg Precision: {precision}')
|
||||
print(f'Micro-avg Recall: {recall}')
|
||||
print(f'F1 Score: {f1}')
|
||||
print(f'RMSE: {rmse}')
|
||||
|
||||
with open(r"beer_metrics.txt", "a") as f:
|
||||
f.write(f"{accuracy},{build_number}\n")
|
24
IUM_06-plot.py
Normal file
24
IUM_06-plot.py
Normal file
@ -0,0 +1,24 @@
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def main():
|
||||
accuracy = []
|
||||
build_numbers = []
|
||||
|
||||
with open("beer_metrics.txt") as f:
|
||||
for line in f:
|
||||
accuracy.append(float(line.split(",")[0]))
|
||||
build_numbers.append(int(line.split(",")[1]))
|
||||
|
||||
plt.plot(build_numbers, accuracy)
|
||||
plt.xlabel("Build Number")
|
||||
plt.ylabel("Accuracy")
|
||||
plt.title("Accuracy of the model over time")
|
||||
plt.xticks(range(min(build_numbers), max(build_numbers) + 1))
|
||||
plt.show()
|
||||
|
||||
plt.savefig("acc.png")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
68
Jenkinsfile
vendored
68
Jenkinsfile
vendored
@ -1,51 +1,61 @@
|
||||
pipeline {
|
||||
agent any
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
|
||||
triggers {
|
||||
upstream(upstreamProjects: 's464979-training/training', threshold: hudson.model.Result.SUCCESS)
|
||||
}
|
||||
|
||||
parameters {
|
||||
string(name: 'CUTOFF', defaultValue: '10000', description: 'Liczba wierszy do obcięcia ze zbioru danych')
|
||||
string(name: 'KAGGLE_USERNAME', defaultValue: '', description: 'Kaggle username')
|
||||
password(name: 'KAGGLE_KEY', defaultValue: '', description: 'Kaggle API key')
|
||||
buildSelector(defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR')
|
||||
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'training', name: 'BRANCH', type: 'PT_BRANCH'
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git url: "https://git.wmi.amu.edu.pl/s464979/ium_464979"
|
||||
git branch: 'evaluation', url: "https://git.wmi.amu.edu.pl/s464979/ium_464979"
|
||||
}
|
||||
}
|
||||
stage('Download dataset') {
|
||||
stage('Copy Dataset Artifacts') {
|
||||
steps {
|
||||
withEnv(["KAGGLE_USERNAME=${env.KAGGLE_USERNAME}", "KAGGLE_KEY=${env.KAGGLE_KEY}"]) {
|
||||
sh "kaggle datasets download -d thedevastator/1-5-million-beer-reviews-from-beer-advocate --unzip"
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Process and Split Dataset') {
|
||||
agent {
|
||||
dockerfile {
|
||||
filename 'Dockerfile'
|
||||
reuseNode true
|
||||
copyArtifacts filter: 'beer_reviews.csv,beer_reviews_train.csv,beer_reviews_test.csv', projectName: 'z-s464979-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
stage('Copy Training Artifacts') {
|
||||
steps {
|
||||
sh "chmod +x ./IUM_05-split.py"
|
||||
sh "python3 ./IUM_05-split.py"
|
||||
archiveArtifacts artifacts: 'beer_reviews.csv,beer_reviews_train.csv,beer_reviews_test.csv', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
stage("Run") {
|
||||
agent {
|
||||
dockerfile {
|
||||
filename 'Dockerfile'
|
||||
reuseNode true
|
||||
copyArtifacts filter: 'beer_review_sentiment_model.h5', projectName: 's464979-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
stage('Copy Evaluation Artifacts') {
|
||||
steps {
|
||||
copyArtifacts filter: 'beer_metrics.txt', projectName: '_s464979-evaluation/evaluation', selector: buildParameter('BUILD_SELECTOR'), optional: true
|
||||
}
|
||||
}
|
||||
stage("Run predictions") {
|
||||
steps {
|
||||
sh "chmod +x ./IUM_05-model.py"
|
||||
sh "chmod +x ./IUM_05-predict.py"
|
||||
sh "python3 ./IUM_05-model.py"
|
||||
sh "python3 ./IUM_05-predict.py"
|
||||
archiveArtifacts artifacts: 'beer_review_sentiment_model.h5,beer_review_sentiment_predictions.csv', onlyIfSuccessful: true
|
||||
archiveArtifacts artifacts: 'beer_review_sentiment_predictions.csv', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
stage('Run metrics') {
|
||||
steps {
|
||||
sh 'chmod +x ./IUM_06-metrics.py'
|
||||
sh "python3 ./IUM_06-metrics.py ${currentBuild.number}"
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run plot') {
|
||||
steps {
|
||||
sh 'chmod +x ./IUM_06-plot.py'
|
||||
sh 'python3 ./IUM_06-plot.py'
|
||||
}
|
||||
}
|
||||
stage('Archive Artifacts') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: '*', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user