ium_464979/IUM_06-metrics.py
AWieczarek 9fdca1cb31 IUM_06
2024-05-06 19:55:12 +02:00

20 lines
707 B
Python

import pandas as pd
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, mean_squared_error
from math import sqrt
# Load the predictions data
data = pd.read_csv('beer_review_sentiment_predictions.csv')
y_pred = data['Predictions']
y_test = data['Actual']
y_test_binary = (y_test >= 3).astype(int)
# Calculate metrics
accuracy = accuracy_score(y_test_binary, y_pred.round())
precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred.round(), average='micro')
rmse = sqrt(mean_squared_error(y_test, y_pred))
print(f'Accuracy: {accuracy}')
print(f'Micro-avg Precision: {precision}')
print(f'Micro-avg Recall: {recall}')
print(f'F1 Score: {f1}')
print(f'RMSE: {rmse}')