13 KiB
13 KiB
import cv2
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Activation, Conv2D, MaxPooling2D
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import re
def preprocessing(image):
scale_percent = 10
width = int(image.shape[1] * scale_percent / 100)
height = int(image.shape[0] * scale_percent / 100)
dim = (width, height)
return cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
def read_data(data_images):
x, y = [], []
for image in data_images:
img = cv2.imread(image, cv2.IMREAD_COLOR)
img = preprocessing(img)
y_label = re.search(r"(?<=-).(?=-)", image).group(0)
x.append(img)
y.append(y_label)
return x, y
location = "capturedframe/"
data_images = os.listdir(location)
# for x in data_images:
# os.rename(location+x, "tree-1-"+ x[13:])
data_images = [location + x for x in data_images if x.endswith(".png")]
print()
x, y = read_data(data_images)
print(y)
['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1']
X_train, X_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=81)
X_train[0].shape
(60, 80, 3)
X_train = np.array([x / 255.0 for x in X_train], dtype=np.float64)
X_test = np.array([x / 255.0 for x in X_test], dtype=np.float64)
y_train = np.array(y_train, dtype=np.int64)
y_test = np.array(y_test, dtype=np.int64)
print((X_train[0]))
[[[0.00073818 0.00086121 0.00070742] [0.0009381 0.00112265 0.0009381 ] [0.00104575 0.00129181 0.00107651] ... [0.00246059 0.00273741 0.00247597] [0.00229143 0.00267589 0.00241446] [0.00232218 0.00276817 0.00247597]] [[0.00089196 0.00099962 0.00081507] [0.00107651 0.00130719 0.00109189] [0.0009381 0.00112265 0.0009381 ] ... [0.00244521 0.00276817 0.00250673] [0.00218378 0.00270665 0.0023837 ] [0.00219915 0.002599 0.0023837 ]] [[0.0012303 0.00124567 0.00103037] [0.00113802 0.00132257 0.00110727] [0.00099962 0.0012303 0.00103037] ... [0.00233756 0.00279892 0.00249135] [0.00226067 0.00264514 0.00232218] [0.00226067 0.00267589 0.00236832]] ... [[0.00084583 0.00101499 0.00083045] [0.00090734 0.00112265 0.00092272] [0.00090734 0.00109189 0.00089196] ... [0.00229143 0.00292195 0.002599 ] [0.00210688 0.00255286 0.00224529] [0.00226067 0.00270665 0.00250673]] [[0.00087659 0.00101499 0.00079969] [0.00079969 0.0009381 0.00075356] [0.00089196 0.00107651 0.00089196] ... [0.00247597 0.00290657 0.00264514] [0.00236832 0.00270665 0.00246059] [0.00235294 0.00293733 0.002599 ]] [[0.0009381 0.00112265 0.00092272] [0.00084583 0.00099962 0.00079969] [0.00084583 0.00099962 0.00081507] ... [0.00282968 0.00315263 0.00290657] [0.00276817 0.0031065 0.0028912 ] [0.00224529 0.00278354 0.00230681]]]
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(X_train[0].shape)))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(32, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(2, activation='sigmoid'))
print(model.summary())
Model: "sequential_6" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_16 (Conv2D) (None, 58, 78, 32) 896 _________________________________________________________________ max_pooling2d_12 (MaxPooling (None, 29, 39, 32) 0 _________________________________________________________________ conv2d_17 (Conv2D) (None, 27, 37, 64) 18496 _________________________________________________________________ max_pooling2d_13 (MaxPooling (None, 13, 18, 64) 0 _________________________________________________________________ conv2d_18 (Conv2D) (None, 11, 16, 32) 18464 _________________________________________________________________ max_pooling2d_14 (MaxPooling (None, 5, 8, 32) 0 _________________________________________________________________ flatten_6 (Flatten) (None, 1280) 0 _________________________________________________________________ dense_12 (Dense) (None, 256) 327936 _________________________________________________________________ dense_13 (Dense) (None, 2) 514 ================================================================= Total params: 366,306 Trainable params: 366,306 Non-trainable params: 0 _________________________________________________________________ None
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=10,
validation_data=(X_test, y_test))
Epoch 1/10 9/9 [==============================] - 1s 62ms/step - loss: 0.4567 - accuracy: 0.9173 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 2/10 9/9 [==============================] - 0s 52ms/step - loss: 0.0021 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 3/10 9/9 [==============================] - 0s 50ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 4/10 9/9 [==============================] - 0s 50ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 5/10 9/9 [==============================] - 0s 51ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 6/10 9/9 [==============================] - 0s 50ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 7/10 9/9 [==============================] - 0s 53ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 8/10 9/9 [==============================] - 0s 52ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 9/10 9/9 [==============================] - 0s 50ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000 Epoch 10/10 9/9 [==============================] - 0s 49ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
3/3 - 0s - loss: 0.0000e+00 - accuracy: 1.0000