challenging-america-word-ga.../run.ipynb

6.5 KiB

import lzma
import csv
import re
import math
from collections import Counter
def read_data(folder_name, test_data=False):
    
    all_data = lzma.open(f'{folder_name}/in.tsv.xz').read().decode('UTF-8').split('\n')
    data = [line.split('\t') for line in all_data][:-1]
    data = [[i[6].replace('\\\\n', ' '), i[7].replace('\\\\n', ' ')] for i in data]
    
    if not test_data:
        words = []
        with open(f'{folder_name}/expected.tsv') as file:
            tsv_file = csv.reader(file, delimiter="\t")
            for line in tsv_file:
                words.append(line[0])
            
        return data, words
    
    return data
def generate_N_grams(text, ngram=1, no_punctuation=True):
    text = re.sub(r'[\-] ', '', text).lower()
    if no_punctuation:
        text = re.sub(r'[^\w\s]', ' ', text)
    words=[word for word in text.split()]
    temp=zip(*[words[i:] for i in range(0,ngram)])
    ans=[' '.join(ngram) for ngram in temp]
    return ans
def check_prob(N_grams):
    if ' ' not in N_grams[0]:
        counter = Counter()
        a = Counter(N_grams)
        total = sum(a.values())
        return {k: v / total for total in (sum(a.values()),) for k, v in a.items()}
    count = {}
    for i in N_grams:
        i = i.rsplit(maxsplit=1)
        if i[0] in count:
            if i[1] in count[i[0]]:
                count[i[0]][i[1]] += 1
            else:
                count[i[0]][i[1]] = 1
        else:
            count[i[0]] = {i[1]: 1}
            
    for word in count:
        s = sum(count[word].values())
        for i in count[word]:
            count[word][i] = count[word][i] / s
        count[word] = sorted(count[word].items(), key=lambda x: x[1], reverse=True)
            
    return count
def find_word(words, model):
    n = len(words)
    tmp = {}
    while n > 1:
        if ' '.join(words[-n:]) in model[n]:
            tmp = model[n][' '.join(words[-n:])][:2]
            break
        else:
            n -= 1
            
    res = ' '.join([i[0] + ':' + str(i[1]) for i in tmp])
    s = 1 - sum(n for _, n in tmp)
    if s == 0:
        s = 1
    res += ' :' + str(s)
    if tmp == {}:
        if words[-1] in model[0]:
            return f'{words[-1]}:{model[0][words[-1]]} :{1 - model[0][words[-1]]}'
        else:
            return ':1'
    return res
def find_words(data, n, model):
    found_words = []
    for i in data:
        t = i[0]
        t = re.sub(r'[\-] ', '', t).lower()
        if True:
            t = re.sub(r'[^\w\s]', ' ', t)
        words=[word for word in t.split()]
        found_words.append(find_word(words[-n:], model))
    return found_words
def save_data(folder, words):
    f = open(f'{folder}/out.tsv', 'w')
    f.write('\n'.join(words) + '\n')
    f.close()
def train(n, data_size = 5000):
    train_data, train_words = read_data('train')
    N_grams = [[] for i in range(n)]
    probs = [[] for i in range(n)]
    for i in range(len(train_data[:data_size])):
        for j in range(n):
            N_grams[j] += generate_N_grams(f'{train_data[i][0]} {train_words[i]} {train_data[i][1]}', j + 1)
    for i in range(n):
        probs[i] = check_prob(N_grams[i])
    return probs
    
model = train(4)
def predict(model, n, data_name, test_data=False):
    if not test_data:
        data, _ = read_data(data_name, test_data)
    else:
        data = read_data(data_name, test_data)
    found_words = find_words(data, n - 1, model)
    save_data(data_name, found_words)
    
predict(model, 4, 'dev-0')
!./geval -t dev-0
794.13
predict(model, 4, 'test-A', True)