s470623-wko/wko-09.ipynb

15 KiB

Logo 1

Widzenie komputerowe

09. Metody głębokiego uczenia (1) [laboratoria]

Andrzej Wójtowicz (2021)

Logo 2

W poniższym materiale zobaczymy w jaki sposób korzystać z metod głębokiego uczenia sieci neuronowych w pakiecie OpenCV.

Na początku załadujmy niezbędne biblioteki:

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

OpenCV wspiera wiele bibliotek i modeli sieci neuronowych. Modele trenuje się poza OpenCV - bibliotekę wykorzystuje się tylko do predykcji, aczkolwiek sama w sobie ma całkiem sporo możliwych optymalizacji w porównaniu do źródłowych bibliotek neuronowych, więc predykcja może być tutaj faktycznie szybsza.

Pliki z modelami i danymi pomocniczymi będziemy pobierali z sieci i będziemy je zapisywali w katalogu dnn:

!mkdir -p dnn

Klasyfikacja obrazów

Spróbujemy wykorzystać sieć do klasyfikacji obrazów wyuczonej na zbiorze ImageNet. Pobierzmy plik zawierający opis 1000 możliwych klas:

!wget -q --show-progress -O dnn/classification_classes_ILSVRC2012.txt https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt 

Spójrzmy na pierwsze pięć klas w pliku:

with open('dnn/classification_classes_ILSVRC2012.txt', 'r') as f_fd:
    classes = f_fd.read().splitlines()
    
print(len(classes), classes[:5])

Do klasyfikacji użyjemy sieci DenseNet. Pobierzemy jedną z mniejszych reimplementacji, która jest hostowana m.in. na Google Drive (musimy doinstalować jeden pakiet):

!pip3 install --user --disable-pip-version-check gdown
import gdown

url = 'https://drive.google.com/uc?id=0B7ubpZO7HnlCcHlfNmJkU2VPelE'
output = 'dnn/DenseNet_121.caffemodel'
gdown.download(url, output, quiet=False)
!wget -q --show-progress -O dnn/DenseNet_121.prototxt https://raw.githubusercontent.com/shicai/DenseNet-Caffe/master/DenseNet_121.prototxt

Konkretne biblioteki neuronowe posiadają dedykowane funkcje do ładowania modeli, np. readNetFromCaffe() lub readNetFromTorch(), jednak można też użyć ogólnej readNet():

model = cv.dnn.readNet(model='dnn/DenseNet_121.prototxt', config='dnn/DenseNet_121.caffemodel', framework='Caffe')

Spróbujemy sklasyfikować poniższy obraz:

image = cv.imread('img/flamingo.jpg')
plt.figure(figsize=[5,5])
plt.imshow(image[:,:,::-1]);

Aby móc przepuścić obraz przez sieć musimy zmienić jego formę reprezentacji poprzez funkcję blobFromImage(). Aby uzyskać sensowne dane musimy ustawić parametry dotyczące preprocessingu (informacje o tym są zawarte na stronie modelu):

image_blob = cv.dnn.blobFromImage(image=image, scalefactor=0.017, size=(224, 224), mean=(104, 117, 123), 
                                  swapRB=False, crop=False)

Ustawiamy dane wejściowe w naszej sieci i pobieramy obliczone wartości:

model.setInput(image_blob)
outputs = model.forward()[0]

Wyliczamy która klasa jest najbardziej prawdopodobna:

outputs = outputs.reshape(1000, 1)

label_id = np.argmax(outputs)

probs = np.exp(outputs) / np.sum(np.exp(outputs))

Wynik:

plt.imshow(image[:,:,::-1])
plt.title(classes[label_id])
print("{:.2f} %".format(np.max(probs) * 100.0))

Wykrywanie twarzy

Do wykrywania twarzy użyjemy sieci bazującej na SSD:

!wget -q --show-progress -O dnn/res10_300x300_ssd_iter_140000_fp16.caffemodel https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
!wget -q --show-progress -O dnn/res10_300x300_ssd_iter_140000_fp16.prototxt https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt

Ładujemy model:

model = cv.dnn.readNet(model='dnn/res10_300x300_ssd_iter_140000_fp16.prototxt', config='dnn/res10_300x300_ssd_iter_140000_fp16.caffemodel', framework='Caffe')

Będziemy chcieli wykryć twarze na poniższym obrazie:

image = cv.imread('img/people.jpg')
plt.figure(figsize=[7,7])
plt.imshow(image[:,:,::-1]);

Znajdujemy twarze i oznaczamy je na zdjęciu (za próg przyjęliśmy 0.5; zob. informacje o preprocessingu):

height, width, _ = image.shape

image_blob = cv.dnn.blobFromImage(image, scalefactor=1.0, size=(300, 300), mean=[104, 177, 123], 
                                  swapRB=False, crop=False)

model.setInput(image_blob)

detections = model.forward()

image_out = image.copy()

for i in range(detections.shape[2]):
    confidence = detections[0, 0, i, 2]
    if confidence > 0.5:

        box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
        (x1, y1, x2, y2) = box.astype('int')

        cv.rectangle(image_out, (x1, y1), (x2, y2), (0, 255, 0), 6)
        label = '{:.3f}'.format(confidence)
        label_size, base_line = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 3.0, 1)
        cv.rectangle(image_out, (x1, y1 - label_size[1]), (x1 + label_size[0], y1 + base_line), 
                      (255, 255, 255), cv.FILLED)
        cv.putText(image_out, label, (x1, y1), cv.FONT_HERSHEY_SIMPLEX, 3.0, (0, 0, 0))
        
plt.figure(figsize=[12,12])
plt.imshow(image_out[:,:,::-1]);

Punkty charakterystyczne twarzy

W OpenCV jest możliwość wykrywania punktów charakterystycznych twarzy (ang. _facial landmarks). Użyjemy zaimplementowanego modelu podczas Google Summer of Code przy użyciu createFacemarkLBF():

!wget -q --show-progress -O dnn/lbfmodel.yaml https://raw.githubusercontent.com/kurnianggoro/GSOC2017/master/data/lbfmodel.yaml
landmark_detector = cv.face.createFacemarkLBF()
landmark_detector.loadModel('dnn/lbfmodel.yaml')

Ograniczamy nasze poszukiwania do twarzy:

faces = []

for detection in detections[0][0]:
    if detection[2] >= 0.5:
        left   = detection[3] * width
        top    = detection[4] * height
        right  = detection[5] * width
        bottom = detection[6] * height

        face_w = right - left
        face_h = bottom - top

        face_roi = (left, top, face_w, face_h)
        faces.append(face_roi)

faces = np.array(faces).astype(int)

_, landmarks_list = landmark_detector.fit(image, faces)

Model generuje 68 punktów charakterycznych, które możemy zwizualizować:

image_display = image.copy()
landmarks = landmarks_list[0][0].astype(int)

for idx, landmark in enumerate(landmarks):
    cv.circle(image_display, landmark, 2, (0,255,255), -1)
    cv.putText(image_display, str(idx), landmark, cv.FONT_HERSHEY_SIMPLEX, 0.35, (0, 255, 0), 1, 
                cv.LINE_AA)

plt.figure(figsize=(10,10))
plt.imshow(image_display[700:1050,500:910,::-1]);

Jeśli nie potrzebujemy numeracji, to możemy użyć prostszego podejścia, tj. funkcji drawFacemarks():

image_display = image.copy()
for landmarks_set in landmarks_list:
    cv.face.drawFacemarks(image_display, landmarks_set, (0, 255, 0))

plt.figure(figsize=(10,10))
plt.imshow(image_display[500:1050,500:1610,::-1]);

Zadanie 1

W katalogu vid znajdują się filmy blinking-*.mp4. Napisz program do wykrywania mrugnięć. Opcjonalnie możesz użyć _eye aspect ratio z tego artykułu lub zaproponować własne rozwiązanie.