2022-03-26 19:08:19 +01:00
|
|
|
from nltk.tokenize import word_tokenize
|
2022-04-02 22:23:56 +02:00
|
|
|
from nltk import trigrams
|
|
|
|
from collections import defaultdict, Counter
|
2022-04-03 13:29:26 +02:00
|
|
|
import pandas as pd
|
|
|
|
import csv
|
2022-04-03 13:53:56 +02:00
|
|
|
import regex as re
|
2022-04-09 20:39:48 +02:00
|
|
|
import sys
|
2022-04-02 22:23:56 +02:00
|
|
|
|
|
|
|
|
2022-04-03 15:23:55 +02:00
|
|
|
DEFAULT_PREDICTION = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
|
|
|
|
|
2022-04-02 22:23:56 +02:00
|
|
|
def preprocess(text):
|
2022-04-03 15:02:14 +02:00
|
|
|
text = text.lower().replace('-\\n', '').replace('\\n', ' ')
|
|
|
|
return re.sub(r'\p{P}', '', text)
|
2022-03-26 19:08:19 +01:00
|
|
|
|
2022-04-02 22:23:56 +02:00
|
|
|
|
2022-04-03 13:53:56 +02:00
|
|
|
|
2022-04-09 20:39:48 +02:00
|
|
|
class Model():
|
|
|
|
def __init__(self, alpha, train_file_name, test_file_name):
|
|
|
|
|
|
|
|
file_expected = pd.read_csv(f'{train_file_name}/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
|
|
|
|
file_in = pd.read_csv(f'{train_file_name}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
|
|
|
|
file_in = file_in[[6, 7]]
|
|
|
|
file_concat = pd.concat([file_in, file_expected], axis=1)
|
|
|
|
file_concat['text'] = file_concat[6] + file_concat[0] + file_concat[7]
|
|
|
|
|
|
|
|
self.file = file_concat[['text']]
|
|
|
|
self.test_file_name = test_file_name
|
|
|
|
self.alpha = alpha;
|
|
|
|
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
|
|
|
|
|
|
|
def train(self):
|
|
|
|
rows = self.file.iterrows()
|
|
|
|
rows_len = len(self.file)
|
|
|
|
for index, (_, row) in enumerate(rows):
|
|
|
|
if index % 1000 == 0:
|
|
|
|
print(f'uczenie modelu: {index / rows_len}')
|
|
|
|
words = word_tokenize(preprocess(str(row['text'])))
|
|
|
|
for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True):
|
|
|
|
if word_1 and word_2 and word_3:
|
|
|
|
self.model[(word_1, word_3)][word_2] += 1
|
|
|
|
model_len = len(self.model)
|
|
|
|
for index, words_1_3 in enumerate(self.model):
|
|
|
|
if index % 100000 == 0:
|
|
|
|
print(f'normalizacja i wygładzanie: {index / model_len}')
|
|
|
|
occurrences = sum(self.model[words_1_3].values())
|
|
|
|
for word_2 in self.model[words_1_3]:
|
|
|
|
self.model[words_1_3][word_2] += self.alpha
|
|
|
|
self.model[words_1_3][word_2] /= float(occurrences + self.alpha + len(word_2))
|
|
|
|
|
|
|
|
def predict_row(self, word_before, word_after):
|
|
|
|
prediction = dict(Counter(dict(self.model[word_before, word_after])).most_common(6))
|
|
|
|
result = []
|
|
|
|
prob = 0.0
|
|
|
|
for key, value in prediction.items():
|
|
|
|
prob += value
|
|
|
|
result.append(f'{key}:{value}')
|
|
|
|
if prob == 0.0:
|
|
|
|
return DEFAULT_PREDICTION
|
|
|
|
result.append(f':{max(1 - prob, 0.01)}')
|
|
|
|
return ' '.join(result)
|
|
|
|
|
|
|
|
def predict(self):
|
|
|
|
data = pd.read_csv(f'{self.test_file_name}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
|
|
|
|
with open(f'{self.test_file_name}/out.tsv', 'w', encoding='utf-8') as file_out:
|
|
|
|
for _, row in data.iterrows():
|
|
|
|
words_before, words_after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))
|
|
|
|
if len(words_before) < 3 or len(words_after) < 3:
|
|
|
|
prediction = DEFAULT_PREDICTION
|
|
|
|
else:
|
|
|
|
prediction = self.predict_row(words_before[-1], words_after[0])
|
|
|
|
file_out.write(prediction + '\n')
|
|
|
|
|
2022-04-03 13:53:56 +02:00
|
|
|
|
2022-04-03 01:09:06 +02:00
|
|
|
|
2022-04-09 20:39:48 +02:00
|
|
|
alpha = float(sys.argv[1])
|
|
|
|
print(f'alfa: {alpha}')
|
2022-04-09 23:15:21 +02:00
|
|
|
model = Model(alpha, 'train', sys.argv[2])
|
2022-04-09 20:39:48 +02:00
|
|
|
model.train()
|
|
|
|
model.predict()
|