7.1 KiB
7.1 KiB
import pandas as pd
import csv
import regex as re
from nltk import bigrams, word_tokenize
from collections import Counter, defaultdict
import string
import unicodedata
from tqdm import tqdm
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
NROWS = 50000
ALPHA = 0.1
def etl():
data = pd.read_csv(
"train/in.tsv.xz",
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
nrows=NROWS
)
train_labels = pd.read_csv(
"train/expected.tsv",
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
nrows=NROWS
)
train_data = data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
model = defaultdict(lambda: defaultdict(lambda: 0))
return train_data, model
def clean(text):
text = str(text).lower().replace("-\\\\n", "").replace("\\\\n", " ")
return re.sub(r"\p{P}", "", text)
def train_model(data):
print("1/2")
for _, row in tqdm(data.iterrows()):
words = word_tokenize(clean(row["final"]))
for word_1, word_2 in bigrams(words, pad_left=True, pad_right=True):
if word_1 and word_2:
vocab.add(word_1)
vocab.add(word_2)
model[word_1][word_2] += 1
print("2/2")
for word_1 in tqdm(model):
total_count = float(sum(model[word_1].values()))
for word_2 in model[word_1]:
model[word_1][word_2] /= total_count
def predict(word):
predictions = dict(model[word])
most_common = dict(Counter(predictions).most_common(5))
total_prob = 0.0
str_prediction = ""
for word, prob in most_common.items():
total_prob += prob
str_prediction += f"{word}:{prob} "
if not total_prob:
return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
if 1 - total_prob >= 0.01:
str_prediction += f":{1-total_prob}"
else:
str_prediction += f":0.01"
return str_prediction
def predict_data(read_path, save_path):
data = pd.read_csv(
read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE
)
with open(save_path, "w", encoding="utf-8") as file:
for _, row in tqdm(data.iterrows()):
words = word_tokenize(clean(row[6]))
if len(words) < 3:
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
else:
prediction = predict(words[-1])
file.write(prediction + "\n")
def plus_alpha_smoothing():
model_len = len(model)
for word_1 in tqdm(model):
word_1_occurrences = sum(model[word_1].values())
for word_2 in model[word_1]:
model[word_1][word_2] += ALPHA
model[word_1][word_2] /= float(word_1_occurrences + ALPHA + len(word_2))
print("Loading data...")
train_data, model = etl()
vocab = set()
print("Training model...")
train_model(train_data)
print("Smoothing...")
plus_alpha_smoothing()
print("Predicting...")
print("Dev set")
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv")
print("Test set")
predict_data("test-A/in.tsv.xz", "test-A/out.tsv")
Loading data...
0it [00:00, ?it/s]
Training model... 1/2
50000it [03:35, 232.50it/s] 0%| | 8/753550 [00:00<3:31:51, 59.28it/s]
2/2
100%|██████████████████████████████████████████████████████████████████████| 753550/753550 [00:04<00:00, 176601.27it/s] 0%| | 3/753550 [00:00<8:51:51, 23.61it/s]
Smoothing...
100%|██████████████████████████████████████████████████████████████████████| 753550/753550 [00:06<00:00, 117904.94it/s]
Predicting... Dev set
10519it [02:07, 82.51it/s]
Test set
7414it [01:16, 96.50it/s]