si23traktor/neural_network/nueralnet.py

132 lines
3.8 KiB
Python
Raw Permalink Normal View History

2023-06-04 10:35:05 +02:00
#imports
import os
2023-06-04 10:35:05 +02:00
import torch
import torch.nn as nn
import torch.optim as optim #optimisation algorithmes
2023-06-04 10:35:05 +02:00
import torch.nn.functional as F
from torch.utils.data import DataLoader
from numpy import mean, std
import torchvision.datasets as datasets #import datsets
2023-06-04 10:35:05 +02:00
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
import time
import os
import copy
2023-06-04 10:35:05 +02:00
#create fully connected network
class NN(nn.Module):
def __init__(self, input_size, num_classes): #1 layer (28x28 = 784 nodes)
super(NN,self).__init__()
2023-06-04 10:35:05 +02:00
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50,num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
#set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 1
# Define data transformations
data_transforms = {
"train": transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"validation": transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
# Set the path to your vegetable images folder
data_dir = "neural_network/dataset/vegetables"
# Load the dataset from the folder
image_datasets = {x: datasets.ImageFolder(f"{data_dir}/{x}", data_transforms[x])
for x in ["train", "validation"]}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4)
for x in ["train", "validation"]}
dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]}
class_names = image_datasets["train"].classes
num_classes = len(class_names)
2023-06-04 10:35:05 +02:00
#initialize network
#model = NN(input_size=input_size, num_classes=num_classes).to(device)
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, num_classes)
model = model.to(device)
2023-06-04 10:35:05 +02:00
#loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
#train network
for epoch in range(num_epochs): #epoch is a number of all pictures in dataset
2023-06-04 10:35:05 +02:00
for batch_idx, (data, targets) in enumerate(train_loader):
#get data to cuda if possible
data = data.to(device = device)
targets = targets.to(device = device)
#get to correct shape
data = data.reshape(data.shape[0], -1)
# forward
scores = model(data)
loss = criterion(scores, targets)
#backward
optimizer.zero_grad()
loss.backward()
#gradient descent or adam step
optimizer.step()
#check accuracy on training and test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x,y in loader:
x = x.to(device = device)
y = y.to(device = device)
x = x.reshape(x.shape[0], -1)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)