astar + graph search

This commit is contained in:
Aliaksei Brown 2023-06-19 15:56:25 +02:00
parent 1a0e89c1e7
commit be0f333181
4 changed files with 159 additions and 85 deletions

Binary file not shown.

136
agent/methods/a_star.py Normal file
View File

@ -0,0 +1,136 @@
class Node:
def __init__(self, state, parent='', action='', distance=0):
self.state = state
self.parent = parent
self.action = action
self.distance = distance
class Search:
def __init__(self, cell_size, cell_number):
self.cell_size = cell_size
self.cell_number = cell_number
def succ(self, state):
x = state[0]
y = state[1]
angle = state[2]
match(angle):
case 'UP':
possible = [['left', x, y, 'LEFT'], ['right', x, y, 'RIGHT']]
if y != 0: possible.append(['move', x, y - 1, 'UP'])
return possible
case 'RIGHT':
possible = [['left', x, y, 'UP'], ['right', x, y, 'DOWN']]
if x != (self.cell_number-1): possible.append(['move', x + 1, y, 'RIGHT'])
return possible
case 'DOWN':
possible = [['left', x, y, 'RIGHT'], ['right', x, y, 'LEFT']]
if y != (self.cell_number-1): possible.append(['move', x, y + 1, 'DOWN'])
return possible
case 'LEFT':
possible = [['left', x, y, 'DOWN'], ['right', x, y, 'UP']]
if x != 0: possible.append(['move', x - 1, y, 'LEFT'])
return possible
def cost(self, node, stones, goal, flowers):
# cost = node.distance
cost = 0
# cost += 10 if stones[node.state[0], node.state[1]] == 1 else 1
cost += 1000 if (node.state[0], node.state[1]) in stones else 1
cost += 10 if ((node.state[0]), (node.state[1])) in flowers else 1
if node.parent:
node = node.parent
cost += node.distance # should return only elem.action in prod
return cost
def heuristic(self, node, goal):
return abs(node.state[0] - goal[0]) + abs(node.state[1] - goal[1])
#bandaid to know about stones
def astarsearch(self, istate, goaltest, stone_list, plant_list):
#to be expanded
def cost_old(x, y):
if (x, y) in stones:
return 10
else:
return 1
x = istate[0]
y = istate[1]
angle = istate[2]
stones = []
flowers = []
for obj in stone_list:
stones.append((obj.xy[0]*50, obj.xy[1]*50))
for obj in plant_list:
if obj.name == 'flower':
flowers.append((obj.xy[0]*50, obj.xy[1]*50))
# stones = [(x*50, y*50) for (x, y) in stone_list]
# flowers = [(x*50, y*50) for (x, y) in plant_list]
print(stones)
# fringe = [(Node([x, y, angle]), cost_old(x, y))] # queue (moves/states to check)
fringe = [(Node([x, y, angle]))] # queue (moves/states to check)
fringe[0].distance = self.cost(fringe[0], stones, goaltest, flowers)
fringe.append((Node([x, y, angle]), self.cost(fringe[0], stones, goaltest, flowers)))
fringe.pop(0)
explored = []
while True:
if len(fringe) == 0:
return False
fringe.sort(key=lambda x: x[1])
elem = fringe.pop(0)[0]
# if goal_test(elem.state):
# return
# print(elem.state[0], elem.state[1], elem.state[2])
if elem.state[0] == goaltest[0] and elem.state[1] == goaltest[1]: # checks if we reached the given point
steps = []
while elem.parent:
steps.append([elem.action, elem.state[0], elem.state[1]]) # should return only elem.action in prod
elem = elem.parent
steps.reverse()
print(steps) # only for dev
return steps
explored.append(elem.state)
for (action, state_x, state_y, state_angle) in self.succ(elem.state):
x = Node([state_x, state_y, state_angle], elem, action)
x.parent = elem
priority = self.cost(elem, stones, goaltest, flowers) + self.heuristic(elem, goaltest)
elem.distance = priority
# priority = cost_old(x, y) + self.heuristic(elem, goaltest)
fringe_states = [node.state for (node, p) in fringe]
if x.state not in fringe_states and x.state not in explored:
fringe.append((x, priority))
elif x.state in fringe_states:
for i in range(len(fringe)):
if fringe[i][0].state == x.state:
if fringe[i][1] > priority:
fringe[i] = (x, priority)
def closest_point(self, x, y, name, plant_list):
self.max_distance = self.cell_number*self.cell_number
for obj in plant_list:
if obj.name == name:
if obj.state == 0:
self.distance = (abs(obj.xy[0] - x) + abs(obj.xy[1] - y))
if self.distance <= self.max_distance:
self.max_distance = self.distance
x_close = obj.xy[0]
y_close = obj.xy[1]
#print("distance: ",self.distance, obj.xy[0], "+", obj.xy[1], "-" ,x, "+",y)
return (x_close, y_close)

View File

@ -1,9 +1,9 @@
class Node:
def __init__(self, state, parent='', action='', distance=0):
def __init__(self, state, parent='', action=''):
self.state = state
self.parent = parent
self.action = action
self.distance = distance
class Search:
def __init__(self, cell_size, cell_number):
@ -17,77 +17,36 @@ class Search:
match(angle):
case 'UP':
possible = [['left', x, y, 'LEFT'], ['right', x, y, 'RIGHT']]
if y != 0: possible.append(['move', x, y - 1, 'UP'])
if y != 0: possible.append(['move', x, y - self.cell_size, 'UP'])
return possible
case 'RIGHT':
possible = [['left', x, y, 'UP'], ['right', x, y, 'DOWN']]
if x != (self.cell_number-1): possible.append(['move', x + 1, y, 'RIGHT'])
if x != self.cell_size*(self.cell_number-1): possible.append(['move', x + self.cell_size, y, 'RIGHT'])
return possible
case 'DOWN':
possible = [['left', x, y, 'RIGHT'], ['right', x, y, 'LEFT']]
if y != (self.cell_number-1): possible.append(['move', x, y + 1, 'DOWN'])
if y != self.cell_size*(self.cell_number-1): possible.append(['move', x, y + self.cell_size, 'DOWN'])
return possible
case 'LEFT':
possible = [['left', x, y, 'DOWN'], ['right', x, y, 'UP']]
if x != 0: possible.append(['move', x - 1, y, 'LEFT'])
if x != 0: possible.append(['move', x - self.cell_size, y, 'LEFT'])
return possible
def cost(self, node, stones, goal, flowers):
# cost = node.distance
cost = 0
# cost += 10 if stones[node.state[0], node.state[1]] == 1 else 1
cost += 1000 if (node.state[0], node.state[1]) in stones else 1
cost += 10 if ((node.state[0]), (node.state[1])) in flowers else 1
if node.parent:
node = node.parent
cost += node.distance # should return only elem.action in prod
return cost
def heuristic(self, node, goal):
return abs(node.state[0] - goal[0]) + abs(node.state[1] - goal[1])
#bandaid to know about stones
def astarsearch(self, istate, goaltest, stone_list, plant_list):
#to be expanded
def cost_old(x, y):
if (x, y) in stones:
return 10
else:
return 1
def graphsearch(self, istate, goaltest):
x = istate[0]
y = istate[1]
angle = istate[2]
stones = []
flowers = []
for obj in stone_list:
stones.append((obj.xy[0]*50, obj.xy[1]*50))
for obj in plant_list:
if obj.name == 'flower':
flowers.append((obj.xy[0]*50, obj.xy[1]*50))
# stones = [(x*50, y*50) for (x, y) in stone_list]
# flowers = [(x*50, y*50) for (x, y) in plant_list]
print(stones)
# fringe = [(Node([x, y, angle]), cost_old(x, y))] # queue (moves/states to check)
fringe = [(Node([x, y, angle]))] # queue (moves/states to check)
fringe[0].distance = self.cost(fringe[0], stones, goaltest, flowers)
fringe.append((Node([x, y, angle]), self.cost(fringe[0], stones, goaltest, flowers)))
fringe.pop(0)
fringe = [Node([x, y, angle])] # queue (moves/states to check)
fringe_state = [fringe[0].state]
explored = []
while True:
if len(fringe) == 0:
return False
fringe.sort(key=lambda x: x[1])
elem = fringe.pop(0)[0]
elem = fringe.pop(0)
fringe_state.pop(0)
# if goal_test(elem.state):
# return
@ -105,32 +64,10 @@ class Search:
explored.append(elem.state)
for (action, state_x, state_y, state_angle) in self.succ(elem.state):
x = Node([state_x, state_y, state_angle], elem, action)
x.parent = elem
priority = self.cost(elem, stones, goaltest, flowers) + self.heuristic(elem, goaltest)
elem.distance = priority
# priority = cost_old(x, y) + self.heuristic(elem, goaltest)
fringe_states = [node.state for (node, p) in fringe]
if x.state not in fringe_states and x.state not in explored:
fringe.append((x, priority))
elif x.state in fringe_states:
for i in range(len(fringe)):
if fringe[i][0].state == x.state:
if fringe[i][1] > priority:
fringe[i] = (x, priority)
def closest_point(self, x, y, name, plant_list):
self.max_distance = self.cell_number*self.cell_number
for obj in plant_list:
if obj.name == name:
if obj.state == 0:
self.distance = (abs(obj.xy[0] - x) + abs(obj.xy[1] - y))
if self.distance <= self.max_distance:
self.max_distance = self.distance
x_close = obj.xy[0]
y_close = obj.xy[1]
#print("distance: ",self.distance, obj.xy[0], "+", obj.xy[1], "-" ,x, "+",y)
return (x_close, y_close)
if [state_x, state_y, state_angle] not in fringe_state and \
[state_x, state_y, state_angle] not in explored:
x = Node([state_x, state_y, state_angle])
x.parent = elem
x.action = action
fringe.append(x)
fringe_state.append(x.state)

View File

@ -6,6 +6,8 @@ from core.chicken import chicken as chick
from core.field import field_settings
from core.plants import plants_settings
from agent.methods.genetic_algorithm import genetic_algorithm
from agent.methods import a_star
import numpy as np
from agent.neural_network import inference
@ -13,7 +15,6 @@ from agent.neural_network import inference
#import neural_network.inference
# import core.plants.plant as plant
# import core.plants.plants_settings as plants_settings
import agent.methods.graph_search as graph_search
#import models.field_block as field_block
@ -59,7 +60,7 @@ class Game:
#vegies_list
self.Plants.locate_veggies(self.veggies_list, 'pepper', self.blocks_number-5)
self.Plants.locate_veggies(self.veggies_list, 'carrot', self.blocks_number-5)
self.Plants.locate_veggies(self.veggies_list, 'pumpkin', self.blocks_number-5)
self.Plants.locate_veggies(self.veggies_list, 'papaya', self.blocks_number-5)
self.Plants.locate_veggies(self.veggies_list, 'wheat', self.blocks_number)
@ -75,8 +76,8 @@ class Game:
running = True
clock = pygame.time.Clock()
move_chicken_event = pygame.USEREVENT + 1
pygame.time.set_timer(move_chicken_event, 1000) # chicken moves every 1000 ms
self.search_object = graph_search.Search(self.cell_size, self.cell_number)
pygame.time.set_timer(move_chicken_event, 500) # chicken moves every 1000 ms
self.search_object = a_star.Search(self.cell_size, self.cell_number)
chicken_next_moves = []
veggies = dict()