Compare commits

...

11 Commits
main ... master

15 changed files with 393 additions and 107 deletions

3
.gitignore vendored
View File

@ -1,3 +0,0 @@
.idea
.DS_Store
__pycache__

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

101
main.py
View File

@ -5,8 +5,90 @@ import land
import tractor
import blocks
import astar_search
import neural_network.inference
from pygame.locals import *
examples = [
['piasek', 'sucha', 'jalowa', 'żółty'],
['czarnoziem', 'wilgotna', 'bogata', 'brazowa'],
['rzedzina', 'wilgotna', 'bogata', 'zielona'],
['gleby murszowe', 'wilgotna', 'bogata', 'szara'],
['pustynne gleby', 'sucha', 'jalowa', 'pomarańczowa'],
['torfowiska', 'sucha', 'jalowa', 'czerwona']
]
attributes = ['typ_gleby', 'wilgotność', 'zawartość_składników', 'kolor']
# Tworzenie obiektu TreeLearn i nauka drzewa decyzyjnego
# tree_learner = TreeLearn()
# default_class = 'nieznane'
# tree_learner.train(examples, attributes, default_class)
class TreeLearn:
def __init__(self):
self.tree = None
def train(self, examples, attributes, default_class):
self.tree = self.build_tree(examples, attributes, default_class)
def build_tree(self, examples, attributes, default_class):
if not examples:
return Node(default_class)
if self.all_same_class(examples):
return Node(examples[0][-1])
if not attributes:
class_counts = self.get_class_counts(examples)
default_class = max(class_counts, key=class_counts.get)
return Node(default_class)
best_attribute = self.choose_attribute(examples, attributes)
root = Node(best_attribute)
attribute_values = self.get_attribute_values(examples, best_attribute)
for value in attribute_values:
new_examples = self.filter_examples(examples, best_attribute, value)
new_attributes = attributes[:]
new_attributes.remove(best_attribute)
new_default_class = max(self.get_class_counts(new_examples), key=lambda k: class_counts.get(k, 0))
subtree = self.build_tree(new_examples, new_attributes, new_default_class)
root.add_child(value, subtree)
return root
def all_same_class(self, examples):
return len(set([example[-1] for example in examples])) == 1
def get_class_counts(self, examples):
class_counts = {}
for example in examples:
class_label = example[-1]
class_counts[class_label] = class_counts.get(class_label, 0) + 1
return class_counts
def choose_attribute(self, examples, attributes):
# Placeholder for attribute selection logic
return attributes[0]
def get_attribute_values(self, examples, attribute):
return list(set([example[attribute] for example in examples]))
def filter_examples(self, examples, attribute, value):
return [example for example in examples if example[attribute] == value]
class Node:
def __init__(self, label):
self.label = label
self.children = {}
def add_child(self, value, child):
self.children[value] = child
class Game:
cell_size = 50
@ -70,10 +152,13 @@ class Game:
clock = pygame.time.Clock()
move_tractor_event = pygame.USEREVENT + 1
pygame.time.set_timer(move_tractor_event, 100) # tractor moves every 1000 ms
pygame.time.set_timer(move_tractor_event, 500) # tractor moves every 1000 ms
tractor_next_moves = []
astar_search_object = astar_search.Search(self.cell_size, self.cell_number)
veggies = dict()
veggies_debug = dict()
while running:
clock.tick(60) # manual fps control not to overwork the computer
for event in pygame.event.get():
@ -109,6 +194,20 @@ class Game:
#bandaid to know about stones
tractor_next_moves = astar_search_object.astarsearch(
[self.tractor.x, self.tractor.y, angles[self.tractor.angle]], [random_x, random_y], self.stone_body, self.flower_body)
current_veggie = next(os.walk('./neural_network/images/test'))[1][random.randint(0, len(next(os.walk('./neural_network/images/test'))[1])-1)]
if(current_veggie in veggies_debug):
veggies_debug[current_veggie]+=1
else:
veggies_debug[current_veggie] = 1
current_veggie_example = next(os.walk(f'./neural_network/images/test/{current_veggie}'))[2][random.randint(0, len(next(os.walk(f'./neural_network/images/test/{current_veggie}'))[2])-1)]
predicted_veggie = neural_network.inference.main(f"./neural_network/images/test/{current_veggie}/{current_veggie_example}")
if predicted_veggie in veggies:
veggies[predicted_veggie]+=1
else:
veggies[predicted_veggie] = 1
print("Debug veggies: ", veggies_debug, "Predicted veggies: ", veggies)
else:
self.tractor.move(tractor_next_moves.pop(0)[0], self.cell_size, self.cell_number)
elif event.type == QUIT:

View File

@ -0,0 +1,42 @@
import torchvision
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
BATCH_SIZE = 64
train_transform = transforms.Compose([
transforms.Resize((224, 224)), #validate that all images are 224x244
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)),
transforms.RandomRotation(degrees=(30, 70)), #random effects are applied to prevent overfitting
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]
)
])
valid_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]
)
])
train_dataset = torchvision.datasets.ImageFolder(root='./images/train', transform=train_transform)
validation_dataset = torchvision.datasets.ImageFolder(root='./images/validation', transform=valid_transform)
train_loader = DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0, pin_memory=True
)
valid_loader = DataLoader(
validation_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0, pin_memory=True
)

View File

@ -0,0 +1,59 @@
import torch
import cv2
import torchvision.transforms as transforms
import argparse
from neural_network.model import CNNModel
# construct the argument parser
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input',
default='',
help='path to the input image')
args = vars(parser.parse_args())
def main(path):
# the computation device
device = ('cuda' if torch.cuda.is_available() else 'cpu')
# list containing all the class labels
labels = [
'bean', 'bitter gourd', 'bottle gourd', 'brinjal', 'broccoli',
'cabbage', 'capsicum', 'carrot', 'cauliflower', 'cucumber',
'papaya', 'potato', 'pumpkin', 'radish', 'tomato'
]
# initialize the model and load the trained weights
model = CNNModel().to(device)
checkpoint = torch.load('./neural_network/outputs/model.pth', map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# define preprocess transforms
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]
)
])
# read and preprocess the image
image = cv2.imread(path)
# get the ground truth class
gt_class = path.split('/')[-2]
orig_image = image.copy()
# convert to RGB format
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = transform(image)
# add batch dimension
image = torch.unsqueeze(image, 0)
with torch.no_grad():
outputs = model(image.to(device))
output_label = torch.topk(outputs, 1)
pred_class = labels[int(output_label.indices)]
return pred_class
if __name__ == "__main__":
main(args['input'])

24
neural_network/model.py Normal file
View File

@ -0,0 +1,24 @@
import torch.nn as nn
import torch.nn.functional as F
class CNNModel(nn.Module): #model of the CNN type
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.conv3 = nn.Conv2d(64, 128, 3)
self.conv4 = nn.Conv2d(128, 256, 5)
self.fc1 = nn.Linear(256, 50)
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
bs, _, _, _ = x.shape
x = F.adaptive_avg_pool2d(x, 1).reshape(bs, -1)
x = self.fc1(x)
return x

View File

@ -1,103 +0,0 @@
#imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
#create fully connected network
class NN(nn.Module):
def __init__(self, input_size, num_classes): #1 layer (28x28 = 784 nodes)
super(NN,self)._init_()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50,num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# model = NN(784, 10)
# x = torch.rand(64, 784)
# print(model(x).shape)
#set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 1
#load data
train_dataset = datasets.MNIST(root='dataset/', train = True, transform = transforms.toTensor(), download = True)
train_loader = DataLoader(dataset= train_dataset, batch_size = batch_size, shuffle = True)
test_dataset = datasets.MNIST(root='dataset/', train = False, transform = transforms.toTensor(), download = True)
test_loader = DataLoader(dataset= test_dataset, batch_size = batch_size, shuffle = True)
#initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
#loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
#train network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
#get data to cuda if possible
data = data.to(device = device)
targets = targets.to(device = device)
#get to correct shape
data = data.reshape(data.shape[0], -1)
# forward
scores = model(data)
loss = criterion(scores, targets)
#backward
optimizer.zero_grad()
loss.backward()
#gradient descent or adam step
optimizer.step()
#check accuracy on training and test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x,y in loader:
x = x.to(device = device)
y = y.to(device = device)
x = x.reshape(x.shape[0], -1)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')
model.train()
return acc
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

119
neural_network/train.py Normal file
View File

@ -0,0 +1,119 @@
import torch
import argparse
import torch.nn as nn
import torch.optim as optim
import time
from tqdm.auto import tqdm
from neural_network.model import CNNModel
from neural_network.datasets import train_loader, valid_loader
from neural_network.utils import save_model, save_plots
# construct the argument parser
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--epochs', type=int, default=20,
help='number of epochs to train our network for')
args = vars(parser.parse_args())
lr = 1e-3
epochs = args['epochs']
device = ('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Computation device: {device}\n")
model = CNNModel().to(device)
print(model)
total_params = sum(p.numel() for p in model.parameters())
print(f"{total_params:,} total parameters.")
total_trainable_params = sum(
p.numel() for p in model.parameters() if p.requires_grad)
print(f"{total_trainable_params:,} training parameters.")
# optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)
# loss function
criterion = nn.CrossEntropyLoss()
# training
def train(model, trainloader, optimizer, criterion):
model.train()
print('Training')
train_running_loss = 0.0
train_running_correct = 0
counter = 0
for i, data in tqdm(enumerate(trainloader), total=len(trainloader)):
counter += 1
image, labels = data
image = image.to(device)
labels = labels.to(device)
optimizer.zero_grad()
# forward pass
outputs = model(image)
# calculate the loss
loss = criterion(outputs, labels)
train_running_loss += loss.item()
# calculate the accuracy
_, preds = torch.max(outputs.data, 1)
train_running_correct += (preds == labels).sum().item()
# backpropagation
loss.backward()
# update the optimizer parameters
optimizer.step()
# loss and accuracy for the complete epoch
epoch_loss = train_running_loss / counter
epoch_acc = 100. * (train_running_correct / len(trainloader.dataset))
return epoch_loss, epoch_acc
# validation
def validate(model, testloader, criterion):
model.eval()
print('Validation')
valid_running_loss = 0.0
valid_running_correct = 0
counter = 0
with torch.no_grad():
for i, data in tqdm(enumerate(testloader), total=len(testloader)):
counter += 1
image, labels = data
image = image.to(device)
labels = labels.to(device)
# forward pass
outputs = model(image)
# calculate the loss
loss = criterion(outputs, labels)
valid_running_loss += loss.item()
# calculate the accuracy
_, preds = torch.max(outputs.data, 1)
valid_running_correct += (preds == labels).sum().item()
# loss and accuracy for the complete epoch
epoch_loss = valid_running_loss / counter
epoch_acc = 100. * (valid_running_correct / len(testloader.dataset))
return epoch_loss, epoch_acc
# lists to keep track of losses and accuracies
train_loss, valid_loss = [], []
train_acc, valid_acc = [], []
# start the training
for epoch in range(epochs):
print(f"[INFO]: Epoch {epoch+1} of {epochs}")
train_epoch_loss, train_epoch_acc = train(model, train_loader,
optimizer, criterion)
valid_epoch_loss, valid_epoch_acc = validate(model, valid_loader,
criterion)
train_loss.append(train_epoch_loss)
valid_loss.append(valid_epoch_loss)
train_acc.append(train_epoch_acc)
valid_acc.append(valid_epoch_acc)
print(f"Training loss: {train_epoch_loss:.3f}, training acc: {train_epoch_acc:.3f}")
print(f"Validation loss: {valid_epoch_loss:.3f}, validation acc: {valid_epoch_acc:.3f}")
print('-'*50)
time.sleep(5)
# save the trained model weights
save_model(epochs, model, optimizer, criterion)
# save the loss and accuracy plots
save_plots(train_acc, valid_acc, train_loss, valid_loss)
print('TRAINING COMPLETE')

49
neural_network/utils.py Normal file
View File

@ -0,0 +1,49 @@
import torch
import matplotlib
import matplotlib.pyplot as plt
matplotlib.style.use('ggplot')
def save_model(epochs, model, optimizer, criterion):
"""
Function to save the trained model to disk.
"""
torch.save({
'epoch': epochs,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': criterion,
}, 'outputs/model.pth')
def save_plots(train_acc, valid_acc, train_loss, valid_loss):
"""
Function to save the loss and accuracy plots to disk.
"""
# accuracy plots
plt.figure(figsize=(10, 7))
plt.plot(
train_acc, color='green', linestyle='-',
label='train accuracy'
)
plt.plot(
valid_acc, color='blue', linestyle='-',
label='validataion accuracy'
)
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.savefig('outputs/accuracy.png')
# loss plots
plt.figure(figsize=(10, 7))
plt.plot(
train_loss, color='orange', linestyle='-',
label='train loss'
)
plt.plot(
valid_loss, color='red', linestyle='-',
label='validataion loss'
)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('outputs/loss.png')