image_recognition #5
51
learn_tree.py
Normal file
51
learn_tree.py
Normal file
@ -0,0 +1,51 @@
|
||||
from collections import Counter
|
||||
|
||||
def tree_learn(examples, attributes, default_class):
|
||||
if len(examples) == 0:
|
||||
return default_class
|
||||
|
||||
if all(examples[0][-1] == example[-1] for example in examples):
|
||||
return examples[0][-1]
|
||||
|
||||
if len(attributes) == 0:
|
||||
class_counts = Counter(example[-1] for example in examples)
|
||||
majority_class = class_counts.most_common(1)[0][0]
|
||||
return majority_class
|
||||
|
||||
# Choose the attribute A as the root of the decision tree
|
||||
A = select_attribute(attributes, examples)
|
||||
|
||||
tree = {A: {}}
|
||||
new_attributes = [attr for attr in attributes if attr != A]
|
||||
new_default_class = Counter(example[-1] for example in examples).most_common(1)[0][0]
|
||||
|
||||
for value in get_attribute_values(A):
|
||||
new_examples = [example for example in examples if example[attributes.index(A)] == value]
|
||||
subtree = tree_learn(new_examples, new_attributes, new_default_class)
|
||||
tree[A][value] = subtree
|
||||
|
||||
return tree
|
||||
|
||||
# Helper function: Select the best attribute based on a certain criterion (e.g., information gain)
|
||||
def select_attribute(attributes, examples):
|
||||
# Implement your attribute selection criterion here
|
||||
pass
|
||||
|
||||
# Helper function: Get the possible values of an attribute from the examples
|
||||
def get_attribute_values(attribute):
|
||||
# Implement your code to retrieve the attribute values from the examples here
|
||||
pass
|
||||
|
||||
# Example usage with coordinates
|
||||
examples = [
|
||||
[1, 2, 'A'],
|
||||
[3, 4, 'A'],
|
||||
[5, 6, 'B'],
|
||||
[7, 8, 'B']
|
||||
]
|
||||
|
||||
attributes = ['x', 'y']
|
||||
default_class = 'unknown'
|
||||
|
||||
decision_tree = tree_learn(examples, attributes, default_class)
|
||||
print(decision_tree)
|
103
neural_network/nueralnet.py
Normal file
103
neural_network/nueralnet.py
Normal file
@ -0,0 +1,103 @@
|
||||
#imports
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
import torchvision.datasets as datasets
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
#create fully connected network
|
||||
class NN(nn.Module):
|
||||
def __init__(self, input_size, num_classes): #1 layer (28x28 = 784 nodes)
|
||||
super(NN,self)._init_()
|
||||
self.fc1 = nn.Linear(input_size, 50)
|
||||
self.fc2 = nn.Linear(50,num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
# model = NN(784, 10)
|
||||
# x = torch.rand(64, 784)
|
||||
# print(model(x).shape)
|
||||
|
||||
#set device
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
#hyperparameters
|
||||
input_size = 784
|
||||
num_classes = 10
|
||||
learning_rate = 0.001
|
||||
batch_size = 64
|
||||
num_epochs = 1
|
||||
|
||||
#load data
|
||||
train_dataset = datasets.MNIST(root='dataset/', train = True, transform = transforms.toTensor(), download = True)
|
||||
train_loader = DataLoader(dataset= train_dataset, batch_size = batch_size, shuffle = True)
|
||||
test_dataset = datasets.MNIST(root='dataset/', train = False, transform = transforms.toTensor(), download = True)
|
||||
test_loader = DataLoader(dataset= test_dataset, batch_size = batch_size, shuffle = True)
|
||||
|
||||
|
||||
#initialize network
|
||||
model = NN(input_size=input_size, num_classes=num_classes).to(device)
|
||||
|
||||
#loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
#train network
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(train_loader):
|
||||
#get data to cuda if possible
|
||||
data = data.to(device = device)
|
||||
targets = targets.to(device = device)
|
||||
|
||||
#get to correct shape
|
||||
data = data.reshape(data.shape[0], -1)
|
||||
|
||||
# forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
#backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
#gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
|
||||
#check accuracy on training and test to see how good our model
|
||||
|
||||
def check_accuracy(loader, model):
|
||||
if loader.dataset.train:
|
||||
print("Checking accuracy on training data")
|
||||
else:
|
||||
print("Checking accuracy on test data")
|
||||
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for x,y in loader:
|
||||
x = x.to(device = device)
|
||||
y = y.to(device = device)
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')
|
||||
|
||||
model.train()
|
||||
return acc
|
||||
|
||||
check_accuracy(train_loader, model)
|
||||
check_accuracy(test_loader, model)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user