Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/lax/ann.py

450 lines
19 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ANN (Approximate Nearest Neighbor) computes top-k with a configurable recall rate.
This package only optimizes the TPU backend. For other device types it fallbacks
to sort and slice.
Usage::
import functools
import jax
# MIPS := maximal inner product search
# Inputs:
# qy: f32[qy_size, feature_dim]
# db: f32[db_size, feature_dim]
#
# Returns:
# (f32[qy_size, k], i32[qy_size, k])
@functools.partial(jax.jit, static_argnames=["k", "recall_target"])
def mips(qy, db, k=10, recall_target=0.95):
dists = jax.lax.dot(qy, db.transpose())
# Computes max_k along the last dimension
# returns (f32[qy_size, k], i32[qy_size, k])
return jax.lax.approx_max_k(dists, k=k, recall_target=recall_target)
# Multi-core example
# Inputs:
# qy: f32[num_devices, qy_size, feature_dim]
# db: f32[num_devices, per_device_db_size, feature_dim]
# db_offset: i32[num_devices]
# db_size = num_devices * per_device_db_size
#
# Returns:
# (f32[qy_size, num_devices, k], i32[qy_size, num_devices, k])
@functools.partial(
jax.pmap,
# static args: db_size, k, recall_target
static_broadcasted_argnums=[3, 4, 5],
out_axes=(1, 1))
def pmap_mips(qy, db, db_offset, db_size, k, recall_target):
dists = jax.lax.dot(qy, db.transpose())
dists, neighbors = jax.lax.approx_max_k(
dists, k=k, recall_target=recall_target,
reduction_input_size_override=db_size)
return (dists, neighbors + db_offset)
# i32[qy_size, num_devices, k]
pmap_neighbors = pmap_mips(qy, db, db_offset, db_size, 10, 0.95)[1]
# i32[qy_size, num_devices * k]
neighbors = jax.lax.collapse(pmap_neighbors, start_dimension=1, stop_dimension=3)
Todos::
* On host top-k aggregation
* Inaccurate but fast differentiation
"""
from functools import partial
from typing import (Any, Tuple)
import numpy as np
from jax._src import ad_util
from jax._src import core
from jax._src import dispatch
from jax._src import dtypes
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import xla
from jax._src.lax import lax
from jax._src.lib import xla_client as xc
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import func
from jax._src.lib.mlir.dialects import hlo
from jax.interpreters import mlir
Array = Any
def approx_max_k(operand: Array,
k: int,
reduction_dimension: int = -1,
recall_target: float = 0.95,
reduction_input_size_override: int = -1,
aggregate_to_topk: bool = True) -> Tuple[Array, Array]:
"""Returns max ``k`` values and their indices of the ``operand`` in an approximate manner.
See https://arxiv.org/abs/2206.14286 for the algorithm details.
Args:
operand : Array to search for max-k. Must be a floating number type.
k : Specifies the number of max-k.
reduction_dimension : Integer dimension along which to search. Default: -1.
recall_target : Recall target for the approximation.
reduction_input_size_override : When set to a positive value, it overrides
the size determined by ``operand[reduction_dim]`` for evaluating the
recall. This option is useful when the given ``operand`` is only a subset
of the overall computation in SPMD or distributed pipelines, where the
true input size cannot be deferred by the operand shape.
aggregate_to_topk : When true, aggregates approximate results to the top-k
in sorted order. When false, returns the approximate results unsorted. In
this case, the number of the approximate results is implementation defined
and is greater or equal to the specified ``k``.
Returns:
Tuple of two arrays. The arrays are the max ``k`` values and the
corresponding indices along the ``reduction_dimension`` of the input
``operand``. The arrays' dimensions are the same as the input ``operand``
except for the ``reduction_dimension``: when ``aggregate_to_topk`` is true,
the reduction dimension is ``k``; otherwise, it is greater equals to ``k``
where the size is implementation-defined.
We encourage users to wrap ``approx_max_k`` with jit. See the following
example for maximal inner production search (MIPS):
>>> import functools
>>> import jax
>>> import numpy as np
>>> @functools.partial(jax.jit, static_argnames=["k", "recall_target"])
... def mips(qy, db, k=10, recall_target=0.95):
... dists = jax.lax.dot(qy, db.transpose())
... # returns (f32[qy_size, k], i32[qy_size, k])
... return jax.lax.approx_max_k(dists, k=k, recall_target=recall_target)
>>>
>>> qy = jax.numpy.array(np.random.rand(50, 64))
>>> db = jax.numpy.array(np.random.rand(1024, 64))
>>> dot_products, neighbors = mips(qy, db, k=10)
"""
return approx_top_k_p.bind(
operand,
k=k,
reduction_dimension=reduction_dimension,
recall_target=recall_target,
is_max_k=True,
reduction_input_size_override=reduction_input_size_override,
aggregate_to_topk=aggregate_to_topk)
def approx_min_k(operand: Array,
k: int,
reduction_dimension: int = -1,
recall_target: float = 0.95,
reduction_input_size_override: int = -1,
aggregate_to_topk: bool = True) -> Tuple[Array, Array]:
"""Returns min ``k`` values and their indices of the ``operand`` in an approximate manner.
See https://arxiv.org/abs/2206.14286 for the algorithm details.
Args:
operand : Array to search for min-k. Must be a floating number type.
k : Specifies the number of min-k.
reduction_dimension: Integer dimension along which to search. Default: -1.
recall_target: Recall target for the approximation.
reduction_input_size_override : When set to a positive value, it overrides
the size determined by ``operand[reduction_dim]`` for evaluating the
recall. This option is useful when the given operand is only a subset of
the overall computation in SPMD or distributed pipelines, where the true
input size cannot be deferred by the ``operand`` shape.
aggregate_to_topk : When true, aggregates approximate results to the top-k
in sorted order. When false, returns the approximate results unsorted. In
this case, the number of the approximate results is implementation defined
and is greater or equal to the specified ``k``.
Returns:
Tuple of two arrays. The arrays are the least ``k`` values and the
corresponding indices along the ``reduction_dimension`` of the input
``operand``. The arrays' dimensions are the same as the input ``operand``
except for the ``reduction_dimension``: when ``aggregate_to_topk`` is true,
the reduction dimension is ``k``; otherwise, it is greater equals to ``k``
where the size is implementation-defined.
We encourage users to wrap ``approx_min_k`` with jit. See the following example
for nearest neighbor search over the squared l2 distance:
>>> import functools
>>> import jax
>>> import numpy as np
>>> @functools.partial(jax.jit, static_argnames=["k", "recall_target"])
... def l2_ann(qy, db, half_db_norms, k=10, recall_target=0.95):
... dists = half_db_norms - jax.lax.dot(qy, db.transpose())
... return jax.lax.approx_min_k(dists, k=k, recall_target=recall_target)
>>>
>>> qy = jax.numpy.array(np.random.rand(50, 64))
>>> db = jax.numpy.array(np.random.rand(1024, 64))
>>> half_db_norm_sq = jax.numpy.linalg.norm(db, axis=1)**2 / 2
>>> dists, neighbors = l2_ann(qy, db, half_db_norm_sq, k=10)
In the example above, we compute ``db^2/2 - dot(qy, db^T)`` instead of
``qy^2 - 2 dot(qy, db^T) + db^2`` for performance reason. The former uses less
arithmetics and produces the same set of neighbors.
"""
return approx_top_k_p.bind(
operand,
k=k,
reduction_dimension=reduction_dimension,
recall_target=recall_target,
is_max_k=False,
reduction_input_size_override=reduction_input_size_override,
aggregate_to_topk=aggregate_to_topk)
def _approx_top_k_abstract_eval(operand, *, k, reduction_dimension,
recall_target, is_max_k,
reduction_input_size_override,
aggregate_to_topk):
if k <= 0:
raise ValueError(f'k must be positive, got {k}')
if len(operand.shape) == 0:
raise TypeError('approx_top_k operand must have >= 1 dimension, got {}'.format(
operand.shape))
dims = list(operand.shape)
if dims[reduction_dimension] < k:
raise ValueError(
'k must be smaller than the size of reduction_dim {}, got {}'.format(
dims[reduction_dimension], k))
if not dtypes.issubdtype(operand.dtype, np.floating):
raise ValueError('operand must be a floating type')
reduction_input_size = dims[reduction_dimension]
dims[reduction_dimension] = xc.ops.ApproxTopKReductionOutputSize(
reduction_input_size, len(dims), k, recall_target, aggregate_to_topk,
reduction_input_size_override)[0]
return (operand.update(
shape=dims, dtype=operand.dtype, weak_type=operand.weak_type),
operand.update(shape=dims, dtype=np.dtype(np.int32)))
def _comparator_builder(op_type, is_max_k):
c = xc.XlaBuilder(
'top_k_{}_comparator'.format('gt' if is_max_k else 'lt'))
p0 = xla.parameter(c, 0, xc.Shape.scalar_shape(op_type))
p1 = xla.parameter(c, 1, xc.Shape.scalar_shape(op_type))
xla.parameter(c, 2, xc.Shape.scalar_shape(np.dtype(np.int32)))
xla.parameter(c, 3, xc.Shape.scalar_shape(np.dtype(np.int32)))
if is_max_k:
cmp_result = xc.ops.Gt(p0, p1)
else:
cmp_result = xc.ops.Lt(p0, p1)
return c.build(cmp_result)
def _get_init_val_literal(op_type, is_max_k):
return np.array(np.NINF if is_max_k else np.Inf, dtype=op_type)
def _approx_top_k_tpu_translation(ctx, avals_in, avals_out, operand, *, k,
reduction_dimension, recall_target, is_max_k,
reduction_input_size_override,
aggregate_to_topk):
c = ctx.builder
op_shape = c.get_shape(operand)
if not op_shape.is_array():
raise ValueError(f'operand must be an array, but was {op_shape}')
op_dims = op_shape.dimensions()
op_type = op_shape.element_type()
if reduction_dimension < 0:
reduction_dimension = len(op_dims) + reduction_dimension
comparator = _comparator_builder(op_type, is_max_k)
init_val_literal = _get_init_val_literal(op_type, is_max_k)
iota = xc.ops.Iota(c, xc.Shape.array_shape(np.dtype(np.int32), op_dims),
reduction_dimension)
init_val = xc.ops.Constant(c, init_val_literal)
init_arg = xc.ops.Constant(c, np.int32(-1))
out = xc.ops.ApproxTopK(c, [operand, iota], [init_val, init_arg], k,
reduction_dimension, comparator, recall_target,
aggregate_to_topk, reduction_input_size_override)
return xla.xla_destructure(c, out)
def _comparator_builder_mlir(ctx, op_type, is_max_k):
scalar = ir.RankedTensorType.get([], op_type)
index = ir.RankedTensorType.get([], ir.IntegerType.get_signless(32))
ir_types = [scalar, scalar, index, index]
result_types = [ir.RankedTensorType.get([], ir.IntegerType.get_signless(1))]
comparator_type = ir.FunctionType.get(ir_types, result_types)
with ir.InsertionPoint.at_block_begin(ctx.module_context.module.body):
comparator = func.FuncOp(
"top_k_{}_{}_comparator".format('gt' if is_max_k else 'lt', op_type),
comparator_type)
ctx.module_context.symbol_table.insert(comparator)
entry_block = comparator.add_entry_block()
with ir.InsertionPoint(entry_block):
p0, p1, _, _ = entry_block.arguments
direction = hlo.ComparisonDirectionAttr.get('GT' if is_max_k else 'LT')
cmp_result = hlo.CompareOp(p0, p1, comparison_direction=direction)
hlo.ReturnOp(cmp_result)
return comparator
def _approx_top_k_lowering(ctx, operand, *, k,
reduction_dimension, recall_target, is_max_k,
reduction_input_size_override,
aggregate_to_topk, fallback=False):
assert ctx.avals_in
assert all(isinstance(x, core.ShapedArray) for x in ctx.avals_in)
op_shape = ctx.avals_in[0].shape
if len(op_shape) == 0:
raise ValueError(f'operand must be an array, but was {op_shape}')
op_dims = op_shape
op_type = mlir.dtype_to_ir_type(ctx.avals_in[0].dtype)
index_type = ir.IntegerType.get_signless(32)
recall_type = ir.F32Type.get()
if reduction_dimension < 0:
reduction_dimension = len(op_dims) + reduction_dimension
comparator = _comparator_builder_mlir(ctx, op_type, is_max_k)
iota = hlo.IotaOp(ir.RankedTensorType.get(op_dims, index_type),
reduction_dimension)
init_arg = hlo.ConstantOp(ir.DenseElementsAttr.get(np.int32(-1)))
# Can't write bf16 literals, so we write a f64 literal and convert it.
init_val_literal = _get_init_val_literal(np.float64, is_max_k)
init_val_array = np.array(init_val_literal, dtype=np.float64).reshape(())
init_val = mlir.ir_constant(init_val_array)
init_val = hlo.ConvertOp(ir.RankedTensorType.get([],
mlir.dtype_to_ir_type(ctx.avals_in[0].dtype)), init_val)
backend_config = {
"top_k" : mlir.i64_attr(k),
"reduction_dim" : mlir.i64_attr(reduction_dimension),
"recall_target" : mlir.ir.FloatAttr.get(recall_type, recall_target),
"aggregate_to_topk" : mlir.ir.BoolAttr.get(aggregate_to_topk),
"reduction_input_size_override" :
mlir.i64_attr(reduction_input_size_override)}
if fallback:
backend_config["is_fallback"] = mlir.ir.BoolAttr.get(fallback)
out = hlo.CustomCallOp([mlir.aval_to_ir_type(aval) for aval in ctx.avals_out],
[operand, iota, init_val, init_arg],
call_target_name=b"ApproxTopK",
called_computations=mlir.ir.ArrayAttr.get(
[mlir.ir.FlatSymbolRefAttr.get(comparator.name.value)]))
backend_config_attr = mlir.ir.DictAttr.get(backend_config,
ctx.module_context.context)
out.operation.attributes["mhlo.backend_config"] = backend_config_attr
return out.results
def _approx_top_k_fallback_translation(ctx, avals_in, avals_out, operand, *, k,
reduction_dimension, recall_target,
is_max_k, reduction_input_size_override,
aggregate_to_topk):
c = ctx.builder
op_shape = c.get_shape(operand)
if not op_shape.is_array():
raise ValueError(f'operand must be an array, but was {op_shape}')
op_dims = op_shape.dimensions()
op_type = op_shape.element_type()
if reduction_dimension < 0:
reduction_dimension = len(op_dims) + reduction_dimension
comparator = _comparator_builder(op_type, is_max_k)
iota = xc.ops.Iota(c, xc.Shape.array_shape(np.dtype(np.int32), op_dims),
reduction_dimension)
init_val_literal = _get_init_val_literal(op_type, is_max_k)
init_val = xc.ops.Constant(c, init_val_literal)
init_arg = xc.ops.Constant(c, np.int32(-1))
out = xc.ops.ApproxTopKFallback(c, [operand, iota], [init_val, init_arg], k,
reduction_dimension, comparator,
recall_target, aggregate_to_topk,
reduction_input_size_override)
return xla.xla_destructure(c, out)
def _approx_top_k_batch_rule(batch_operands, batch_axes, *, k,
reduction_dimension, recall_target, is_max_k,
reduction_input_size_override, aggregate_to_topk):
assert len(batch_operands) == 1
assert len(batch_axes) == 1
operand, = batch_operands
batch_axis, = batch_axes
dim_map = [d for d in range(operand.ndim) if d is not batch_axis]
reduction_dimension = dim_map[reduction_dimension]
return approx_top_k_p.bind(
operand,
k=k,
reduction_dimension=reduction_dimension,
recall_target=recall_target,
is_max_k=is_max_k,
reduction_input_size_override=reduction_input_size_override,
aggregate_to_topk=aggregate_to_topk), (batch_axis, batch_axis)
# Slow jvp implementation using gather.
#
# TODO(fchern): Some optimization ideas
# 1. ApproxTopK is internally a variadic reduce, so we can simply call
# ApproxTopK(operand, tangent, iota) for jvp.
# 2. vjp cannot benefit from the algorithm above. We must run scatter to
# distribute the output cotangent to input cotangent. A reasonable way to do
# this is to run it on CPU.
def _approx_top_k_jvp(primals, tangents, *, k, reduction_dimension,
recall_target, is_max_k, reduction_input_size_override,
aggregate_to_topk):
operand, = primals
tangent, = tangents
if is_max_k:
val_out, arg_out = approx_max_k(operand, k, reduction_dimension,
recall_target,
reduction_input_size_override,
aggregate_to_topk)
else:
val_out, arg_out = approx_min_k(operand, k, reduction_dimension,
recall_target,
reduction_input_size_override,
aggregate_to_topk)
if type(tangent) is ad_util.Zero:
tangent_out = ad_util.Zero.from_value(val_out)
else:
arg_shape = arg_out.shape
rank = len(arg_shape)
if reduction_dimension < 0:
reduction_dimension += rank
iotas = [
lax.broadcasted_iota(arg_out.dtype, arg_shape, i) for i in range(rank)
]
idx = tuple(
arg_out if i == reduction_dimension else iotas[i] for i in range(rank))
tangent_out = tangent[idx]
return (val_out, arg_out), (tangent_out, ad_util.Zero.from_value(arg_out))
approx_top_k_p = core.Primitive('approx_top_k')
approx_top_k_p.multiple_results = True
approx_top_k_p.def_impl(partial(dispatch.apply_primitive, approx_top_k_p))
approx_top_k_p.def_abstract_eval(_approx_top_k_abstract_eval)
mlir.register_lowering(approx_top_k_p,
partial(_approx_top_k_lowering, fallback=True))
mlir.register_lowering(approx_top_k_p, _approx_top_k_lowering,
platform='tpu')
batching.primitive_batchers[approx_top_k_p] = _approx_top_k_batch_rule
ad.primitive_jvps[approx_top_k_p] = _approx_top_k_jvp