Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/lax/svd.py

239 lines
8.7 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""A JIT-compatible library for QDWH-based singular value decomposition.
QDWH is short for QR-based dynamically weighted Halley iteration. The Halley
iteration implemented through QR decmopositions is numerically stable and does
not require solving a linear system involving the iteration matrix or
computing its inversion. This is desirable for multicore and heterogeneous
computing systems.
References:
Nakatsukasa, Yuji, and Nicholas J. Higham.
"Stable and efficient spectral divide and conquer algorithms for the symmetric
eigenvalue decomposition and the SVD." SIAM Journal on Scientific Computing 35,
no. 3 (2013): A1325-A1349.
https://epubs.siam.org/doi/abs/10.1137/120876605
Nakatsukasa, Yuji, Zhaojun Bai, and François Gygi.
"Optimizing Halley's iteration for computing the matrix polar decomposition."
SIAM Journal on Matrix Analysis and Applications 31, no. 5 (2010): 2700-2720.
https://epubs.siam.org/doi/abs/10.1137/090774999
"""
import functools
from typing import Any, Sequence, Union
import jax
import jax.numpy as jnp
from jax import lax
from jax._src import core
@functools.partial(jax.jit, static_argnums=(1, 2))
def _zero_svd(a: Any,
full_matrices: bool,
compute_uv: bool = True) -> Union[Any, Sequence[Any]]:
"""SVD on matrix of all zeros."""
m, n = a.shape
k = min(m, n)
s = jnp.zeros(shape=(k,), dtype=a.real.dtype)
if compute_uv:
if full_matrices:
u = jnp.eye(m, m, dtype=a.dtype)
vh = jnp.eye(n, n, dtype=a.dtype)
else:
u = jnp.eye(m, k, dtype=a.dtype)
vh = jnp.eye(k, n, dtype=a.dtype)
return (u, s, vh)
else:
return s
@functools.partial(jax.jit, static_argnums=(1, 2, 3))
def _svd_tall_and_square_input(
a: Any, hermitian: bool, compute_uv: bool, max_iterations: int
) -> Union[Any, Sequence[Any]]:
"""Singular value decomposition for m x n matrix and m >= n.
Args:
a: A matrix of shape `m x n` with `m >= n`.
hermitian: True if `a` is Hermitian.
compute_uv: Whether to compute also `u` and `v` in addition to `s`.
max_iterations: The predefined maximum number of iterations of QDWH.
Returns:
A 3-tuple (`u`, `s`, `v`), where `u` is a unitary matrix of shape `m x n`,
`s` is vector of length `n` containing the singular values in the descending
order, `v` is a unitary matrix of shape `n x n`, and
`a = (u * s) @ v.T.conj()`. For `compute_uv=False`, only `s` is returned.
"""
u, h, _, _ = lax.linalg.qdwh(a, is_hermitian=hermitian,
max_iterations=max_iterations)
# TODO: Uses `eigvals_only=True` if `compute_uv=False`.
v, s = lax.linalg.eigh(h)
# Flips the singular values in descending order.
s_out = jnp.flip(s)
if not compute_uv:
return s_out
# Reorders eigenvectors.
v_out = jnp.fliplr(v)
u_out = u @ v_out
# Makes correction if computed `u` from qdwh is not unitary.
# Section 5.5 of Nakatsukasa, Yuji, and Nicholas J. Higham. "Stable and
# efficient spectral divide and conquer algorithms for the symmetric
# eigenvalue decomposition and the SVD." SIAM Journal on Scientific Computing
# 35, no. 3 (2013): A1325-A1349.
def correct_rank_deficiency(u_out):
u_out, r = lax.linalg.qr(u_out, full_matrices=False)
u_out = u_out @ jnp.diag(lax.sign(jnp.diag(r)))
return u_out
eps = float(jnp.finfo(a.dtype).eps)
u_out = lax.cond(s[0] < a.shape[1] * eps * s_out[0],
correct_rank_deficiency,
lambda u_out: u_out,
operand=(u_out))
return (u_out, s_out, v_out)
@functools.partial(jax.jit, static_argnums=(1, 2, 3, 4))
def _qdwh_svd(a: Any,
full_matrices: bool,
compute_uv: bool = True,
hermitian: bool = False,
max_iterations: int = 10) -> Union[Any, Sequence[Any]]:
"""Singular value decomposition.
Args:
a: A matrix of shape `m x n`.
full_matrices: If True, `u` and `vh` have the shapes `m x m` and `n x n`,
respectively. If False, the shapes are `m x k` and `k x n`, respectively,
where `k = min(m, n)`.
compute_uv: Whether to compute also `u` and `v` in addition to `s`.
hermitian: True if `a` is Hermitian.
max_iterations: The predefined maximum number of iterations of QDWH.
Returns:
A 3-tuple (`u`, `s`, `vh`), where `u` and `vh` are unitary matrices,
`s` is vector of length `k` containing the singular values in the
non-increasing order, and `k = min(m, n)`. The shapes of `u` and `vh`
depend on the value of `full_matrices`. For `compute_uv=False`,
only `s` is returned.
"""
m, n = a.shape
is_flip = False
if m < n:
a = a.T.conj()
m, n = a.shape
is_flip = True
reduce_to_square = False
if full_matrices:
q_full, a_full = lax.linalg.qr(a, full_matrices=True)
q = q_full[:, :n]
u_out_null = q_full[:, n:]
a = a_full[:n, :]
reduce_to_square = True
else:
# The constant `1.15` comes from Yuji Nakatsukasa's implementation
# https://www.mathworks.com/matlabcentral/fileexchange/36830-symmetric-eigenvalue-decomposition-and-the-svd?s_tid=FX_rc3_behav
if m > 1.15 * n:
q, a = lax.linalg.qr(a, full_matrices=False)
reduce_to_square = True
if not compute_uv:
with jax.default_matmul_precision('float32'):
return _svd_tall_and_square_input(a, hermitian, compute_uv,
max_iterations)
with jax.default_matmul_precision('float32'):
u_out, s_out, v_out = _svd_tall_and_square_input(
a, hermitian, compute_uv, max_iterations)
if reduce_to_square:
u_out = q @ u_out
if full_matrices:
u_out = jnp.hstack((u_out, u_out_null))
if is_flip:
return(v_out, s_out, u_out.T.conj())
return (u_out, s_out, v_out.T.conj())
@functools.partial(jax.jit, static_argnums=(1, 2, 3, 4))
def svd(a: Any,
full_matrices: bool,
compute_uv: bool = True,
hermitian: bool = False,
max_iterations: int = 10) -> Union[Any, Sequence[Any]]:
"""Singular value decomposition.
Args:
a: A matrix of shape `m x n`.
full_matrices: If True, `u` and `vh` have the shapes `m x m` and `n x n`,
respectively. If False, the shapes are `m x k` and `k x n`, respectively,
where `k = min(m, n)`.
compute_uv: Whether to compute also `u` and `v` in addition to `s`.
hermitian: True if `a` is Hermitian.
max_iterations: The predefined maximum number of iterations of QDWH.
Returns:
A 3-tuple (`u`, `s`, `vh`), where `u` and `vh` are unitary matrices,
`s` is vector of length `k` containing the singular values in the
non-increasing order, and `k = min(m, n)`. The shapes of `u` and `vh`
depend on the value of `full_matrices`. For `compute_uv=False`,
only `s` is returned.
"""
full_matrices = core.concrete_or_error(
bool, full_matrices, 'The `full_matrices` argument must be statically '
'specified to use `svd` within JAX transformations.')
compute_uv = core.concrete_or_error(
bool, compute_uv, 'The `compute_uv` argument must be statically '
'specified to use `svd` within JAX transformations.')
hermitian = core.concrete_or_error(
bool, hermitian, 'The `hermitian` argument must be statically '
'specified to use `qdwh` within JAX transformations.')
max_iterations = core.concrete_or_error(
int, max_iterations, 'The `max_iterations` argument must be statically '
'specified to use `qdwh` within JAX transformations.')
# QDWH algorithm fails at zero-matrix `A` and produces all NaNs, which can
# be seen from a dynamically weighted Halley (DWH) iteration:
# X_{k+1} = X_k(a_k I + b_k {X_k}^H X_k)(I + c_k {X_k}^H X_k)^{1} and
# X_0 = A/alpha, where alpha = ||A||_2, the triplet (a_k, b_k, c_k) are
# weighting parameters, and X_k denotes the k^{th} iterate.
return jax.lax.cond(jnp.all(a == 0),
functools.partial(_zero_svd, full_matrices=full_matrices,
compute_uv=compute_uv),
functools.partial(_qdwh_svd, full_matrices=full_matrices,
compute_uv=compute_uv,
hermitian=hermitian,
max_iterations=max_iterations),
operand=(a))