Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/feature_column/dense_features.py

192 lines
7.8 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A layer that produces a dense `Tensor` based on given `feature_columns`."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import tensorflow.compat.v2 as tf
from keras import backend
from keras.feature_column import base_feature_layer as kfc
from keras.saving.legacy.saved_model import json_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export(v1=["keras.layers.DenseFeatures"])
class DenseFeatures(kfc._BaseFeaturesLayer):
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Generally a single example in training data is described with
FeatureColumns. At the first layer of the model, this column-oriented data
should be converted to a single `Tensor`.
This layer can be called multiple times with different features.
This is the V1 version of this layer that uses variable_scope's or
partitioner to create variables which works well with PartitionedVariables.
Variable scopes are deprecated in V2, so the V2 version uses name_scopes
instead. But currently that lacks support for partitioned variables. Use
this if you need partitioned variables. Use the partitioner argument if you
have a Keras model and uses
`tf.compat.v1.keras.estimator.model_to_estimator` for training.
Example:
```python
price = tf.feature_column.numeric_column('price')
keywords_embedded = tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_hash_bucket("keywords", 10K),
dimension=16)
columns = [price, keywords_embedded, ...]
partitioner = tf.compat.v1.fixed_size_partitioner(num_shards=4)
feature_layer = tf.compat.v1.keras.layers.DenseFeatures(
feature_columns=columns, partitioner=partitioner)
features = tf.io.parse_example(
..., features=tf.feature_column.make_parse_example_spec(columns))
dense_tensor = feature_layer(features)
for units in [128, 64, 32]:
dense_tensor = tf.compat.v1.keras.layers.Dense(
units, activation='relu')(dense_tensor)
prediction = tf.compat.v1.keras.layers.Dense(1)(dense_tensor)
```
"""
def __init__(
self,
feature_columns,
trainable=True,
name=None,
partitioner=None,
**kwargs
):
"""Constructs a DenseFeatures layer.
Args:
feature_columns: An iterable containing the FeatureColumns to use as
inputs to your model. All items should be instances of classes
derived from `DenseColumn` such as `numeric_column`,
`embedding_column`, `bucketized_column`, `indicator_column`. If you
have categorical features, you can wrap them with an
`embedding_column` or `indicator_column`.
trainable: Boolean, whether the layer's variables will be updated via
gradient descent during training.
name: Name to give to the DenseFeatures.
partitioner: Partitioner for input layer. Defaults to None.
**kwargs: Keyword arguments to construct a layer.
Raises:
ValueError: if an item in `feature_columns` is not a `DenseColumn`.
"""
super().__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
partitioner=partitioner,
expected_column_type=tf.__internal__.feature_column.DenseColumn,
**kwargs
)
@property
def _is_feature_layer(self):
return True
@property
def _tracking_metadata(self):
"""String stored in metadata field in the SavedModel proto.
Returns:
A serialized JSON storing information necessary for recreating this
layer.
"""
metadata = json.loads(super()._tracking_metadata)
metadata["_is_feature_layer"] = True
return json.dumps(metadata, default=json_utils.get_json_type)
def _target_shape(self, input_shape, total_elements):
return (input_shape[0], total_elements)
def call(self, features, cols_to_output_tensors=None, training=None):
"""Returns a dense tensor corresponding to the `feature_columns`.
Example usage:
>>> t1 = tf.feature_column.embedding_column(
... tf.feature_column.categorical_column_with_hash_bucket("t1", 2),
... dimension=8)
>>> t2 = tf.feature_column.numeric_column('t2')
>>> feature_layer = tf.compat.v1.keras.layers.DenseFeatures([t1, t2])
>>> features = {"t1": tf.constant(["a", "b"]),
... "t2": tf.constant([1, 2])}
>>> dense_tensor = feature_layer(features, training=True)
Args:
features: A mapping from key to tensors. `FeatureColumn`s look up via
these keys. For example `numeric_column('price')` will look at
'price' key in this dict. Values can be a `SparseTensor` or a
`Tensor` depends on corresponding `FeatureColumn`.
cols_to_output_tensors: If not `None`, this will be filled with a dict
mapping feature columns to output tensors created.
training: Python boolean or None, indicating whether to the layer is
being run in training mode. This argument is passed to the call
method of any `FeatureColumn` that takes a `training` argument. For
example, if a `FeatureColumn` performed dropout, the column could
expose a `training` argument to control whether the dropout should
be applied. If `None`, defaults to
`tf.keras.backend.learning_phase()`.
Returns:
A `Tensor` which represents input layer of a model. Its shape
is (batch_size, first_layer_dimension) and its dtype is `float32`.
first_layer_dimension is determined based on given `feature_columns`.
Raises:
ValueError: If features are not a dictionary.
"""
if training is None:
training = backend.learning_phase()
if not isinstance(features, dict):
raise ValueError(
"We expected a dictionary here. Instead we got: ", features
)
transformation_cache = (
tf.__internal__.feature_column.FeatureTransformationCache(features)
)
output_tensors = []
for column in self._feature_columns:
with backend.name_scope(column.name):
try:
tensor = column.get_dense_tensor(
transformation_cache,
self._state_manager,
training=training,
)
except TypeError:
tensor = column.get_dense_tensor(
transformation_cache, self._state_manager
)
processed_tensors = self._process_dense_tensor(column, tensor)
if cols_to_output_tensors is not None:
cols_to_output_tensors[column] = processed_tensors
output_tensors.append(processed_tensors)
return self._verify_and_concat_tensors(output_tensors)