217 lines
8.7 KiB
Python
217 lines
8.7 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Keras depthwise separable 2D convolution."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import activations
|
||
|
from keras import constraints
|
||
|
from keras import initializers
|
||
|
from keras import regularizers
|
||
|
from keras.layers.convolutional.base_separable_conv import SeparableConv
|
||
|
from keras.utils import conv_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export(
|
||
|
"keras.layers.SeparableConv2D", "keras.layers.SeparableConvolution2D"
|
||
|
)
|
||
|
class SeparableConv2D(SeparableConv):
|
||
|
"""Depthwise separable 2D convolution.
|
||
|
|
||
|
Separable convolutions consist of first performing
|
||
|
a depthwise spatial convolution
|
||
|
(which acts on each input channel separately)
|
||
|
followed by a pointwise convolution which mixes the resulting
|
||
|
output channels. The `depth_multiplier` argument controls how many
|
||
|
output channels are generated per input channel in the depthwise step.
|
||
|
|
||
|
Intuitively, separable convolutions can be understood as
|
||
|
a way to factorize a convolution kernel into two smaller kernels,
|
||
|
or as an extreme version of an Inception block.
|
||
|
|
||
|
Args:
|
||
|
filters: Integer, the dimensionality of the output space
|
||
|
(i.e. the number of output filters in the convolution).
|
||
|
kernel_size: An integer or tuple/list of 2 integers, specifying the
|
||
|
height and width of the 2D convolution window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 2 integers,
|
||
|
specifying the strides of the convolution along the height and width.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions. Current implementation only supports equal
|
||
|
length strides in the row and column dimensions.
|
||
|
Specifying any stride value != 1 is incompatible with specifying
|
||
|
any `dilation_rate` value != 1.
|
||
|
padding: one of `"valid"` or `"same"` (case-insensitive).
|
||
|
`"valid"` means no padding. `"same"` results in padding with zeros
|
||
|
evenly to the left/right or up/down of the input such that output has
|
||
|
the same height/width dimension as the input.
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch_size, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch_size, channels, height, width)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
dilation_rate: An integer or tuple/list of 2 integers, specifying
|
||
|
the dilation rate to use for dilated convolution.
|
||
|
depth_multiplier: The number of depthwise convolution output channels
|
||
|
for each input channel.
|
||
|
The total number of depthwise convolution output
|
||
|
channels will be equal to `filters_in * depth_multiplier`.
|
||
|
activation: Activation function to use.
|
||
|
If you don't specify anything, no activation is applied
|
||
|
(see `keras.activations`).
|
||
|
use_bias: Boolean, whether the layer uses a bias vector.
|
||
|
depthwise_initializer: An initializer for the depthwise convolution kernel
|
||
|
(see `keras.initializers`). If None, then the default initializer
|
||
|
('glorot_uniform') will be used.
|
||
|
pointwise_initializer: An initializer for the pointwise convolution kernel
|
||
|
(see `keras.initializers`). If None, then the default initializer
|
||
|
('glorot_uniform') will be used.
|
||
|
bias_initializer: An initializer for the bias vector. If None, the default
|
||
|
initializer ('zeros') will be used (see `keras.initializers`).
|
||
|
depthwise_regularizer: Regularizer function applied to
|
||
|
the depthwise kernel matrix (see `keras.regularizers`).
|
||
|
pointwise_regularizer: Regularizer function applied to
|
||
|
the pointwise kernel matrix (see `keras.regularizers`).
|
||
|
bias_regularizer: Regularizer function applied to the bias vector
|
||
|
(see `keras.regularizers`).
|
||
|
activity_regularizer: Regularizer function applied to
|
||
|
the output of the layer (its "activation")
|
||
|
(see `keras.regularizers`).
|
||
|
depthwise_constraint: Constraint function applied to
|
||
|
the depthwise kernel matrix
|
||
|
(see `keras.constraints`).
|
||
|
pointwise_constraint: Constraint function applied to
|
||
|
the pointwise kernel matrix
|
||
|
(see `keras.constraints`).
|
||
|
bias_constraint: Constraint function applied to the bias vector
|
||
|
(see `keras.constraints`).
|
||
|
|
||
|
Input shape:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, rows, cols)` if data_format='channels_first'
|
||
|
or 4D tensor with shape:
|
||
|
`(batch_size, rows, cols, channels)` if data_format='channels_last'.
|
||
|
|
||
|
Output shape:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, filters, new_rows, new_cols)` if
|
||
|
data_format='channels_first'
|
||
|
or 4D tensor with shape:
|
||
|
`(batch_size, new_rows, new_cols, filters)` if
|
||
|
data_format='channels_last'. `rows` and `cols` values might have changed
|
||
|
due to padding.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of rank 4 representing
|
||
|
`activation(separableconv2d(inputs, kernel) + bias)`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `padding` is "causal".
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
filters,
|
||
|
kernel_size,
|
||
|
strides=(1, 1),
|
||
|
padding="valid",
|
||
|
data_format=None,
|
||
|
dilation_rate=(1, 1),
|
||
|
depth_multiplier=1,
|
||
|
activation=None,
|
||
|
use_bias=True,
|
||
|
depthwise_initializer="glorot_uniform",
|
||
|
pointwise_initializer="glorot_uniform",
|
||
|
bias_initializer="zeros",
|
||
|
depthwise_regularizer=None,
|
||
|
pointwise_regularizer=None,
|
||
|
bias_regularizer=None,
|
||
|
activity_regularizer=None,
|
||
|
depthwise_constraint=None,
|
||
|
pointwise_constraint=None,
|
||
|
bias_constraint=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(
|
||
|
rank=2,
|
||
|
filters=filters,
|
||
|
kernel_size=kernel_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
dilation_rate=dilation_rate,
|
||
|
depth_multiplier=depth_multiplier,
|
||
|
activation=activations.get(activation),
|
||
|
use_bias=use_bias,
|
||
|
depthwise_initializer=initializers.get(depthwise_initializer),
|
||
|
pointwise_initializer=initializers.get(pointwise_initializer),
|
||
|
bias_initializer=initializers.get(bias_initializer),
|
||
|
depthwise_regularizer=regularizers.get(depthwise_regularizer),
|
||
|
pointwise_regularizer=regularizers.get(pointwise_regularizer),
|
||
|
bias_regularizer=regularizers.get(bias_regularizer),
|
||
|
activity_regularizer=regularizers.get(activity_regularizer),
|
||
|
depthwise_constraint=constraints.get(depthwise_constraint),
|
||
|
pointwise_constraint=constraints.get(pointwise_constraint),
|
||
|
bias_constraint=constraints.get(bias_constraint),
|
||
|
**kwargs
|
||
|
)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
# Apply the actual ops.
|
||
|
if self.data_format == "channels_last":
|
||
|
strides = (1,) + self.strides + (1,)
|
||
|
else:
|
||
|
strides = (1, 1) + self.strides
|
||
|
outputs = tf.compat.v1.nn.separable_conv2d(
|
||
|
inputs,
|
||
|
self.depthwise_kernel,
|
||
|
self.pointwise_kernel,
|
||
|
strides=strides,
|
||
|
padding=self.padding.upper(),
|
||
|
rate=self.dilation_rate,
|
||
|
data_format=conv_utils.convert_data_format(
|
||
|
self.data_format, ndim=4
|
||
|
),
|
||
|
)
|
||
|
|
||
|
if self.use_bias:
|
||
|
outputs = tf.nn.bias_add(
|
||
|
outputs,
|
||
|
self.bias,
|
||
|
data_format=conv_utils.convert_data_format(
|
||
|
self.data_format, ndim=4
|
||
|
),
|
||
|
)
|
||
|
|
||
|
if self.activation is not None:
|
||
|
return self.activation(outputs)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Alias
|
||
|
|
||
|
SeparableConvolution2D = SeparableConv2D
|