Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/convolutional/separable_conv2d.py
2023-06-19 00:49:18 +02:00

217 lines
8.7 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras depthwise separable 2D convolution."""
import tensorflow.compat.v2 as tf
from keras import activations
from keras import constraints
from keras import initializers
from keras import regularizers
from keras.layers.convolutional.base_separable_conv import SeparableConv
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export(
"keras.layers.SeparableConv2D", "keras.layers.SeparableConvolution2D"
)
class SeparableConv2D(SeparableConv):
"""Depthwise separable 2D convolution.
Separable convolutions consist of first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes the resulting
output channels. The `depth_multiplier` argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as
a way to factorize a convolution kernel into two smaller kernels,
or as an extreme version of an Inception block.
Args:
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions. Current implementation only supports equal
length strides in the row and column dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: one of `"valid"` or `"same"` (case-insensitive).
`"valid"` means no padding. `"same"` results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch_size, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
dilation_rate: An integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
activation: Activation function to use.
If you don't specify anything, no activation is applied
(see `keras.activations`).
use_bias: Boolean, whether the layer uses a bias vector.
depthwise_initializer: An initializer for the depthwise convolution kernel
(see `keras.initializers`). If None, then the default initializer
('glorot_uniform') will be used.
pointwise_initializer: An initializer for the pointwise convolution kernel
(see `keras.initializers`). If None, then the default initializer
('glorot_uniform') will be used.
bias_initializer: An initializer for the bias vector. If None, the default
initializer ('zeros') will be used (see `keras.initializers`).
depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix (see `keras.regularizers`).
pointwise_regularizer: Regularizer function applied to
the pointwise kernel matrix (see `keras.regularizers`).
bias_regularizer: Regularizer function applied to the bias vector
(see `keras.regularizers`).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation")
(see `keras.regularizers`).
depthwise_constraint: Constraint function applied to
the depthwise kernel matrix
(see `keras.constraints`).
pointwise_constraint: Constraint function applied to
the pointwise kernel matrix
(see `keras.constraints`).
bias_constraint: Constraint function applied to the bias vector
(see `keras.constraints`).
Input shape:
4D tensor with shape:
`(batch_size, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(batch_size, rows, cols, channels)` if data_format='channels_last'.
Output shape:
4D tensor with shape:
`(batch_size, filters, new_rows, new_cols)` if
data_format='channels_first'
or 4D tensor with shape:
`(batch_size, new_rows, new_cols, filters)` if
data_format='channels_last'. `rows` and `cols` values might have changed
due to padding.
Returns:
A tensor of rank 4 representing
`activation(separableconv2d(inputs, kernel) + bias)`.
Raises:
ValueError: if `padding` is "causal".
"""
def __init__(
self,
filters,
kernel_size,
strides=(1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1),
depth_multiplier=1,
activation=None,
use_bias=True,
depthwise_initializer="glorot_uniform",
pointwise_initializer="glorot_uniform",
bias_initializer="zeros",
depthwise_regularizer=None,
pointwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
pointwise_constraint=None,
bias_constraint=None,
**kwargs
):
super().__init__(
rank=2,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
depth_multiplier=depth_multiplier,
activation=activations.get(activation),
use_bias=use_bias,
depthwise_initializer=initializers.get(depthwise_initializer),
pointwise_initializer=initializers.get(pointwise_initializer),
bias_initializer=initializers.get(bias_initializer),
depthwise_regularizer=regularizers.get(depthwise_regularizer),
pointwise_regularizer=regularizers.get(pointwise_regularizer),
bias_regularizer=regularizers.get(bias_regularizer),
activity_regularizer=regularizers.get(activity_regularizer),
depthwise_constraint=constraints.get(depthwise_constraint),
pointwise_constraint=constraints.get(pointwise_constraint),
bias_constraint=constraints.get(bias_constraint),
**kwargs
)
def call(self, inputs):
# Apply the actual ops.
if self.data_format == "channels_last":
strides = (1,) + self.strides + (1,)
else:
strides = (1, 1) + self.strides
outputs = tf.compat.v1.nn.separable_conv2d(
inputs,
self.depthwise_kernel,
self.pointwise_kernel,
strides=strides,
padding=self.padding.upper(),
rate=self.dilation_rate,
data_format=conv_utils.convert_data_format(
self.data_format, ndim=4
),
)
if self.use_bias:
outputs = tf.nn.bias_add(
outputs,
self.bias,
data_format=conv_utils.convert_data_format(
self.data_format, ndim=4
),
)
if self.activation is not None:
return self.activation(outputs)
return outputs
# Alias
SeparableConvolution2D = SeparableConv2D