156 lines
5.8 KiB
Python
156 lines
5.8 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Keras zero-padding layer for 2D input."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import backend
|
||
|
from keras.engine.base_layer import Layer
|
||
|
from keras.engine.input_spec import InputSpec
|
||
|
from keras.utils import conv_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.ZeroPadding2D")
|
||
|
class ZeroPadding2D(Layer):
|
||
|
"""Zero-padding layer for 2D input (e.g. picture).
|
||
|
|
||
|
This layer can add rows and columns of zeros
|
||
|
at the top, bottom, left and right side of an image tensor.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> input_shape = (1, 1, 2, 2)
|
||
|
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
|
||
|
>>> print(x)
|
||
|
[[[[0 1]
|
||
|
[2 3]]]]
|
||
|
>>> y = tf.keras.layers.ZeroPadding2D(padding=1)(x)
|
||
|
>>> print(y)
|
||
|
tf.Tensor(
|
||
|
[[[[0 0]
|
||
|
[0 0]
|
||
|
[0 0]
|
||
|
[0 0]]
|
||
|
[[0 0]
|
||
|
[0 1]
|
||
|
[2 3]
|
||
|
[0 0]]
|
||
|
[[0 0]
|
||
|
[0 0]
|
||
|
[0 0]
|
||
|
[0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
|
||
|
|
||
|
Args:
|
||
|
padding: Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
|
||
|
- If int: the same symmetric padding
|
||
|
is applied to height and width.
|
||
|
- If tuple of 2 ints:
|
||
|
interpreted as two different
|
||
|
symmetric padding values for height and width:
|
||
|
`(symmetric_height_pad, symmetric_width_pad)`.
|
||
|
- If tuple of 2 tuples of 2 ints:
|
||
|
interpreted as
|
||
|
`((top_pad, bottom_pad), (left_pad, right_pad))`
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch_size, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch_size, channels, height, width)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
4D tensor with shape:
|
||
|
- If `data_format` is `"channels_last"`:
|
||
|
`(batch_size, rows, cols, channels)`
|
||
|
- If `data_format` is `"channels_first"`:
|
||
|
`(batch_size, channels, rows, cols)`
|
||
|
|
||
|
Output shape:
|
||
|
4D tensor with shape:
|
||
|
- If `data_format` is `"channels_last"`:
|
||
|
`(batch_size, padded_rows, padded_cols, channels)`
|
||
|
- If `data_format` is `"channels_first"`:
|
||
|
`(batch_size, channels, padded_rows, padded_cols)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self, padding=(1, 1), data_format=None, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
if isinstance(padding, int):
|
||
|
self.padding = ((padding, padding), (padding, padding))
|
||
|
elif hasattr(padding, "__len__"):
|
||
|
if len(padding) != 2:
|
||
|
raise ValueError(
|
||
|
f"`padding` should have two elements. Received: {padding}."
|
||
|
)
|
||
|
height_padding = conv_utils.normalize_tuple(
|
||
|
padding[0], 2, "1st entry of padding", allow_zero=True
|
||
|
)
|
||
|
width_padding = conv_utils.normalize_tuple(
|
||
|
padding[1], 2, "2nd entry of padding", allow_zero=True
|
||
|
)
|
||
|
self.padding = (height_padding, width_padding)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"`padding` should be either an int, "
|
||
|
"a tuple of 2 ints "
|
||
|
"(symmetric_height_pad, symmetric_width_pad), "
|
||
|
"or a tuple of 2 tuples of 2 ints "
|
||
|
"((top_pad, bottom_pad), (left_pad, right_pad)). "
|
||
|
f"Received: {padding}."
|
||
|
)
|
||
|
self.input_spec = InputSpec(ndim=4)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tf.TensorShape(input_shape).as_list()
|
||
|
if self.data_format == "channels_first":
|
||
|
if input_shape[2] is not None:
|
||
|
rows = input_shape[2] + self.padding[0][0] + self.padding[0][1]
|
||
|
else:
|
||
|
rows = None
|
||
|
if input_shape[3] is not None:
|
||
|
cols = input_shape[3] + self.padding[1][0] + self.padding[1][1]
|
||
|
else:
|
||
|
cols = None
|
||
|
return tf.TensorShape([input_shape[0], input_shape[1], rows, cols])
|
||
|
elif self.data_format == "channels_last":
|
||
|
if input_shape[1] is not None:
|
||
|
rows = input_shape[1] + self.padding[0][0] + self.padding[0][1]
|
||
|
else:
|
||
|
rows = None
|
||
|
if input_shape[2] is not None:
|
||
|
cols = input_shape[2] + self.padding[1][0] + self.padding[1][1]
|
||
|
else:
|
||
|
cols = None
|
||
|
return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return backend.spatial_2d_padding(
|
||
|
inputs, padding=self.padding, data_format=self.data_format
|
||
|
)
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {"padding": self.padding, "data_format": self.data_format}
|
||
|
base_config = super().get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|