Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/zero_padding2d.py
2023-06-19 00:49:18 +02:00

156 lines
5.8 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras zero-padding layer for 2D input."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.ZeroPadding2D")
class ZeroPadding2D(Layer):
"""Zero-padding layer for 2D input (e.g. picture).
This layer can add rows and columns of zeros
at the top, bottom, left and right side of an image tensor.
Examples:
>>> input_shape = (1, 1, 2, 2)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[[0 1]
[2 3]]]]
>>> y = tf.keras.layers.ZeroPadding2D(padding=1)(x)
>>> print(y)
tf.Tensor(
[[[[0 0]
[0 0]
[0 0]
[0 0]]
[[0 0]
[0 1]
[2 3]
[0 0]]
[[0 0]
[0 0]
[0 0]
[0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
Args:
padding: Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric padding
is applied to height and width.
- If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
`(symmetric_height_pad, symmetric_width_pad)`.
- If tuple of 2 tuples of 2 ints:
interpreted as
`((top_pad, bottom_pad), (left_pad, right_pad))`
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch_size, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, rows, cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, rows, cols)`
Output shape:
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, padded_rows, padded_cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, padded_rows, padded_cols)`
"""
def __init__(self, padding=(1, 1), data_format=None, **kwargs):
super().__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
if isinstance(padding, int):
self.padding = ((padding, padding), (padding, padding))
elif hasattr(padding, "__len__"):
if len(padding) != 2:
raise ValueError(
f"`padding` should have two elements. Received: {padding}."
)
height_padding = conv_utils.normalize_tuple(
padding[0], 2, "1st entry of padding", allow_zero=True
)
width_padding = conv_utils.normalize_tuple(
padding[1], 2, "2nd entry of padding", allow_zero=True
)
self.padding = (height_padding, width_padding)
else:
raise ValueError(
"`padding` should be either an int, "
"a tuple of 2 ints "
"(symmetric_height_pad, symmetric_width_pad), "
"or a tuple of 2 tuples of 2 ints "
"((top_pad, bottom_pad), (left_pad, right_pad)). "
f"Received: {padding}."
)
self.input_spec = InputSpec(ndim=4)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
if self.data_format == "channels_first":
if input_shape[2] is not None:
rows = input_shape[2] + self.padding[0][0] + self.padding[0][1]
else:
rows = None
if input_shape[3] is not None:
cols = input_shape[3] + self.padding[1][0] + self.padding[1][1]
else:
cols = None
return tf.TensorShape([input_shape[0], input_shape[1], rows, cols])
elif self.data_format == "channels_last":
if input_shape[1] is not None:
rows = input_shape[1] + self.padding[0][0] + self.padding[0][1]
else:
rows = None
if input_shape[2] is not None:
cols = input_shape[2] + self.padding[1][0] + self.padding[1][1]
else:
cols = None
return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]])
def call(self, inputs):
return backend.spatial_2d_padding(
inputs, padding=self.padding, data_format=self.data_format
)
def get_config(self):
config = {"padding": self.padding, "data_format": self.data_format}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))