Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/optimizers/nadam.py

206 lines
7.2 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Nadam optimizer implementation."""
import tensorflow.compat.v2 as tf
from keras.optimizers import optimizer
from keras.saving.object_registration import register_keras_serializable
# isort: off
from tensorflow.python.util.tf_export import keras_export
@register_keras_serializable()
@keras_export(
"keras.optimizers.experimental.Nadam", "keras.optimizers.Nadam", v1=[]
)
class Nadam(optimizer.Optimizer):
r"""Optimizer that implements the Nadam algorithm.
Much like Adam is essentially RMSprop with momentum, Nadam is Adam with
Nesterov momentum.
Args:
learning_rate: A `tf.Tensor`, floating point value, a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001.
beta_1: A float value or a constant float tensor, or a callable
that takes no arguments and returns the actual value to use. The
exponential decay rate for the 1st moment estimates. Defaults to 0.9.
beta_2: A float value or a constant float tensor, or a callable
that takes no arguments and returns the actual value to use. The
exponential decay rate for the 2nd moment estimates. Defaults to 0.999.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to
1e-7.
{{base_optimizer_keyword_args}}
Reference:
- [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf).
"""
def __init__(
self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
name="Nadam",
**kwargs
):
super().__init__(
name=name,
weight_decay=weight_decay,
clipnorm=clipnorm,
clipvalue=clipvalue,
global_clipnorm=global_clipnorm,
use_ema=use_ema,
ema_momentum=ema_momentum,
ema_overwrite_frequency=ema_overwrite_frequency,
jit_compile=jit_compile,
**kwargs
)
self._learning_rate = self._build_learning_rate(learning_rate)
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
def build(self, var_list):
"""Initialize optimizer variables.
Nadam optimizer has 2 types of variables: momentums and velocities.
Args:
var_list: list of model variables to build Nadam variables on.
"""
super().build(var_list)
if getattr(self, "_built", False):
return
self._built = True
self._momentums = []
self._velocities = []
self._u_product = tf.Variable(1.0, dtype=var_list[0].dtype)
# Keep a counter on how many times of _u_product has been computed to
# avoid duplicated computations.
self._u_product_counter = 1
for var in var_list:
self._momentums.append(
self.add_variable_from_reference(
model_variable=var, variable_name="m"
)
)
self._velocities.append(
self.add_variable_from_reference(
model_variable=var, variable_name="v"
)
)
def update_step(self, gradient, variable):
"""Update step given gradient and the associated model variable."""
var_dtype = variable.dtype
lr = tf.cast(self.learning_rate, var_dtype)
local_step = tf.cast(self.iterations + 1, var_dtype)
next_step = tf.cast(self.iterations + 2, var_dtype)
decay = tf.cast(0.96, var_dtype)
beta_1 = tf.cast(self.beta_1, var_dtype)
beta_2 = tf.cast(self.beta_2, var_dtype)
u_t = beta_1 * (1.0 - 0.5 * (tf.pow(decay, local_step)))
u_t_1 = beta_1 * (1.0 - 0.5 * (tf.pow(decay, next_step)))
def get_cached_u_product():
return self._u_product
def compute_new_u_product():
u_product_t = self._u_product * u_t
self._u_product.assign(u_product_t)
self._u_product_counter += 1
return u_product_t
u_product_t = tf.cond(
self._u_product_counter == (self.iterations + 2),
true_fn=get_cached_u_product,
false_fn=compute_new_u_product,
)
u_product_t_1 = u_product_t * u_t_1
beta_2_power = tf.pow(beta_2, local_step)
var_key = self._var_key(variable)
m = self._momentums[self._index_dict[var_key]]
v = self._velocities[self._index_dict[var_key]]
if isinstance(gradient, tf.IndexedSlices):
# Sparse gradients.
m.assign_add(-m * (1 - beta_1))
m.scatter_add(
tf.IndexedSlices(
gradient.values * (1 - beta_1), gradient.indices
)
)
v.assign_add(-v * (1 - beta_2))
v.scatter_add(
tf.IndexedSlices(
tf.square(gradient.values) * (1 - beta_2), gradient.indices
)
)
m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / (
1 - u_product_t
)
v_hat = v / (1 - beta_2_power)
variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon))
else:
# Dense gradients.
m.assign_add((gradient - m) * (1 - beta_1))
v.assign_add((tf.square(gradient) - v) * (1 - beta_2))
m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / (
1 - u_product_t
)
v_hat = v / (1 - beta_2_power)
variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon))
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter(
self._learning_rate
),
"beta_1": self.beta_1,
"beta_2": self.beta_2,
"epsilon": self.epsilon,
}
)
return config
Nadam.__doc__ = Nadam.__doc__.replace(
"{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args
)