Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/applications/nasnet.py
2023-06-19 00:49:18 +02:00

911 lines
32 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NASNet-A models for Keras.
NASNet refers to Neural Architecture Search Network, a family of models
that were designed automatically by learning the model architectures
directly on the dataset of interest.
Here we consider NASNet-A, the highest performance model that was found
for the CIFAR-10 dataset, and then extended to ImageNet 2012 dataset,
obtaining state of the art performance on CIFAR-10 and ImageNet 2012.
Only the NASNet-A models, and their respective weights, which are suited
for ImageNet 2012 are provided.
The below table describes the performance on ImageNet 2012:
---------------------------------------------------------------------------
Architecture | Top-1 Acc | Top-5 Acc | Multiply-Adds | Params (M)
---------------------|-----------|-----------|----------------|------------
NASNet-A (4 @ 1056) | 74.0 % | 91.6 % | 564 M | 5.3
NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9
Reference:
- [Learning Transferable Architectures for Scalable Image Recognition](
https://arxiv.org/abs/1707.07012) (CVPR 2018)
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
# isort: off
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
BASE_WEIGHTS_PATH = (
"https://storage.googleapis.com/tensorflow/keras-applications/nasnet/"
)
NASNET_MOBILE_WEIGHT_PATH = BASE_WEIGHTS_PATH + "NASNet-mobile.h5"
NASNET_MOBILE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + "NASNet-mobile-no-top.h5"
NASNET_LARGE_WEIGHT_PATH = BASE_WEIGHTS_PATH + "NASNet-large.h5"
NASNET_LARGE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + "NASNet-large-no-top.h5"
layers = VersionAwareLayers()
def NASNet(
input_shape=None,
penultimate_filters=4032,
num_blocks=6,
stem_block_filters=96,
skip_reduction=True,
filter_multiplier=2,
include_top=True,
weights="imagenet",
input_tensor=None,
pooling=None,
classes=1000,
default_size=None,
classifier_activation="softmax",
):
"""Instantiates a NASNet model.
Reference:
- [Learning Transferable Architectures for Scalable Image Recognition](
https://arxiv.org/abs/1707.07012) (CVPR 2018)
For image classification use cases, see
[this page for detailed examples](
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
For transfer learning use cases, make sure to read the
[guide to transfer learning & fine-tuning](
https://keras.io/guides/transfer_learning/).
Note: each Keras Application expects a specific kind of input preprocessing.
For NasNet, call `tf.keras.applications.nasnet.preprocess_input`
on your inputs before passing them to the model.
`nasnet.preprocess_input` will scale input pixels between -1 and 1.
Args:
input_shape: Optional shape tuple, the input shape
is by default `(331, 331, 3)` for NASNetLarge and
`(224, 224, 3)` for NASNetMobile.
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
penultimate_filters: Number of filters in the penultimate layer.
NASNet models use the notation `NASNet (N @ P)`, where:
- N is the number of blocks
- P is the number of penultimate filters
num_blocks: Number of repeated blocks of the NASNet model.
NASNet models use the notation `NASNet (N @ P)`, where:
- N is the number of blocks
- P is the number of penultimate filters
stem_block_filters: Number of filters in the initial stem block
skip_reduction: Whether to skip the reduction step at the tail
end of the network.
filter_multiplier: Controls the width of the network.
- If `filter_multiplier` < 1.0, proportionally decreases the number
of filters in each layer.
- If `filter_multiplier` > 1.0, proportionally increases the number
of filters in each layer.
- If `filter_multiplier` = 1, default number of filters from the
paper are used at each layer.
include_top: Whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights)
input_tensor: Optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: Optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
default_size: Specifies the default image size of the model
classifier_activation: A `str` or callable. The activation function to use
on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top" layer.
When loading pretrained weights, `classifier_activation` can only
be `None` or `"softmax"`.
Returns:
A `keras.Model` instance.
"""
if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
raise ValueError(
"The `weights` argument should be either "
"`None` (random initialization), `imagenet` "
"(pre-training on ImageNet), "
"or the path to the weights file to be loaded."
)
if weights == "imagenet" and include_top and classes != 1000:
raise ValueError(
'If using `weights` as `"imagenet"` with `include_top` '
"as true, `classes` should be 1000"
)
if (
isinstance(input_shape, tuple)
and None in input_shape
and weights == "imagenet"
):
raise ValueError(
"When specifying the input shape of a NASNet"
" and loading `ImageNet` weights, "
"the input_shape argument must be static "
"(no None entries). Got: `input_shape=" + str(input_shape) + "`."
)
if default_size is None:
default_size = 331
# Determine proper input shape and default size.
input_shape = imagenet_utils.obtain_input_shape(
input_shape,
default_size=default_size,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights,
)
if backend.image_data_format() != "channels_last":
logging.warning(
"The NASNet family of models is only available "
'for the input data format "channels_last" '
"(width, height, channels). "
"However your settings specify the default "
'data format "channels_first" (channels, width, height).'
' You should set `image_data_format="channels_last"` '
"in your Keras config located at ~/.keras/keras.json. "
"The model being returned right now will expect inputs "
'to follow the "channels_last" data format.'
)
backend.set_image_data_format("channels_last")
old_data_format = "channels_first"
else:
old_data_format = None
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
if penultimate_filters % (24 * (filter_multiplier**2)) != 0:
raise ValueError(
"For NASNet-A models, the `penultimate_filters` must be a multiple "
"of 24 * (`filter_multiplier` ** 2). Current value: %d"
% penultimate_filters
)
channel_dim = 1 if backend.image_data_format() == "channels_first" else -1
filters = penultimate_filters // 24
x = layers.Conv2D(
stem_block_filters,
(3, 3),
strides=(2, 2),
padding="valid",
use_bias=False,
name="stem_conv1",
kernel_initializer="he_normal",
)(img_input)
x = layers.BatchNormalization(
axis=channel_dim, momentum=0.9997, epsilon=1e-3, name="stem_bn1"
)(x)
p = None
x, p = _reduction_a_cell(
x, p, filters // (filter_multiplier**2), block_id="stem_1"
)
x, p = _reduction_a_cell(
x, p, filters // filter_multiplier, block_id="stem_2"
)
for i in range(num_blocks):
x, p = _normal_a_cell(x, p, filters, block_id="%d" % (i))
x, p0 = _reduction_a_cell(
x, p, filters * filter_multiplier, block_id="reduce_%d" % (num_blocks)
)
p = p0 if not skip_reduction else p
for i in range(num_blocks):
x, p = _normal_a_cell(
x,
p,
filters * filter_multiplier,
block_id="%d" % (num_blocks + i + 1),
)
x, p0 = _reduction_a_cell(
x,
p,
filters * filter_multiplier**2,
block_id="reduce_%d" % (2 * num_blocks),
)
p = p0 if not skip_reduction else p
for i in range(num_blocks):
x, p = _normal_a_cell(
x,
p,
filters * filter_multiplier**2,
block_id="%d" % (2 * num_blocks + i + 1),
)
x = layers.Activation("relu")(x)
if include_top:
x = layers.GlobalAveragePooling2D()(x)
imagenet_utils.validate_activation(classifier_activation, weights)
x = layers.Dense(
classes, activation=classifier_activation, name="predictions"
)(x)
else:
if pooling == "avg":
x = layers.GlobalAveragePooling2D()(x)
elif pooling == "max":
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = layer_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
model = training.Model(inputs, x, name="NASNet")
# Load weights.
if weights == "imagenet":
if default_size == 224: # mobile version
if include_top:
weights_path = data_utils.get_file(
"nasnet_mobile.h5",
NASNET_MOBILE_WEIGHT_PATH,
cache_subdir="models",
file_hash="020fb642bf7360b370c678b08e0adf61",
)
else:
weights_path = data_utils.get_file(
"nasnet_mobile_no_top.h5",
NASNET_MOBILE_WEIGHT_PATH_NO_TOP,
cache_subdir="models",
file_hash="1ed92395b5b598bdda52abe5c0dbfd63",
)
model.load_weights(weights_path)
elif default_size == 331: # large version
if include_top:
weights_path = data_utils.get_file(
"nasnet_large.h5",
NASNET_LARGE_WEIGHT_PATH,
cache_subdir="models",
file_hash="11577c9a518f0070763c2b964a382f17",
)
else:
weights_path = data_utils.get_file(
"nasnet_large_no_top.h5",
NASNET_LARGE_WEIGHT_PATH_NO_TOP,
cache_subdir="models",
file_hash="d81d89dc07e6e56530c4e77faddd61b5",
)
model.load_weights(weights_path)
else:
raise ValueError(
"ImageNet weights can only be loaded with NASNetLarge"
" or NASNetMobile"
)
elif weights is not None:
model.load_weights(weights)
if old_data_format:
backend.set_image_data_format(old_data_format)
return model
@keras_export(
"keras.applications.nasnet.NASNetMobile", "keras.applications.NASNetMobile"
)
def NASNetMobile(
input_shape=None,
include_top=True,
weights="imagenet",
input_tensor=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
):
"""Instantiates a Mobile NASNet model in ImageNet mode.
Reference:
- [Learning Transferable Architectures for Scalable Image Recognition](
https://arxiv.org/abs/1707.07012) (CVPR 2018)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
Note: each Keras Application expects a specific kind of input preprocessing.
For NASNet, call `tf.keras.applications.nasnet.preprocess_input` on your
inputs before passing them to the model.
Args:
input_shape: Optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` for NASNetMobile
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
include_top: Whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights). For loading `imagenet` weights,
`input_shape` should be (224, 224, 3)
input_tensor: Optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: Optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
classifier_activation: A `str` or callable. The activation function to
use on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top"
layer. When loading pretrained weights, `classifier_activation` can
only be `None` or `"softmax"`.
Returns:
A Keras model instance.
Raises:
ValueError: In case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
"""
return NASNet(
input_shape,
penultimate_filters=1056,
num_blocks=4,
stem_block_filters=32,
skip_reduction=False,
filter_multiplier=2,
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
pooling=pooling,
classes=classes,
default_size=224,
classifier_activation=classifier_activation,
)
@keras_export(
"keras.applications.nasnet.NASNetLarge", "keras.applications.NASNetLarge"
)
def NASNetLarge(
input_shape=None,
include_top=True,
weights="imagenet",
input_tensor=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
):
"""Instantiates a NASNet model in ImageNet mode.
Reference:
- [Learning Transferable Architectures for Scalable Image Recognition](
https://arxiv.org/abs/1707.07012) (CVPR 2018)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
Note: each Keras Application expects a specific kind of input preprocessing.
For NASNet, call `tf.keras.applications.nasnet.preprocess_input` on your
inputs before passing them to the model.
Args:
input_shape: Optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(331, 331, 3)` for NASNetLarge.
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
include_top: Whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights). For loading `imagenet` weights,
`input_shape` should be (331, 331, 3)
input_tensor: Optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: Optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
classifier_activation: A `str` or callable. The activation function to
use on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top"
layer. When loading pretrained weights, `classifier_activation` can
only be `None` or `"softmax"`.
Returns:
A Keras model instance.
Raises:
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
"""
return NASNet(
input_shape,
penultimate_filters=4032,
num_blocks=6,
stem_block_filters=96,
skip_reduction=True,
filter_multiplier=2,
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
pooling=pooling,
classes=classes,
default_size=331,
classifier_activation=classifier_activation,
)
def _separable_conv_block(
ip, filters, kernel_size=(3, 3), strides=(1, 1), block_id=None
):
"""Adds 2 blocks of [relu-separable conv-batchnorm].
Args:
ip: Input tensor
filters: Number of output filters per layer
kernel_size: Kernel size of separable convolutions
strides: Strided convolution for downsampling
block_id: String block_id
Returns:
A Keras tensor
"""
channel_dim = 1 if backend.image_data_format() == "channels_first" else -1
with backend.name_scope(f"separable_conv_block_{block_id}"):
x = layers.Activation("relu")(ip)
if strides == (2, 2):
x = layers.ZeroPadding2D(
padding=imagenet_utils.correct_pad(x, kernel_size),
name=f"separable_conv_1_pad_{block_id}",
)(x)
conv_pad = "valid"
else:
conv_pad = "same"
x = layers.SeparableConv2D(
filters,
kernel_size,
strides=strides,
name=f"separable_conv_1_{block_id}",
padding=conv_pad,
use_bias=False,
kernel_initializer="he_normal",
)(x)
x = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name=f"separable_conv_1_bn_{block_id}",
)(x)
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(
filters,
kernel_size,
name=f"separable_conv_2_{block_id}",
padding="same",
use_bias=False,
kernel_initializer="he_normal",
)(x)
x = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name=f"separable_conv_2_bn_{block_id}",
)(x)
return x
def _adjust_block(p, ip, filters, block_id=None):
"""Adjusts the input `previous path` to match the shape of the `input`.
Used in situations where the output number of filters needs to be changed.
Args:
p: Input tensor which needs to be modified
ip: Input tensor whose shape needs to be matched
filters: Number of output filters to be matched
block_id: String block_id
Returns:
Adjusted Keras tensor
"""
channel_dim = 1 if backend.image_data_format() == "channels_first" else -1
img_dim = 2 if backend.image_data_format() == "channels_first" else -2
ip_shape = backend.int_shape(ip)
if p is not None:
p_shape = backend.int_shape(p)
with backend.name_scope("adjust_block"):
if p is None:
p = ip
elif p_shape[img_dim] != ip_shape[img_dim]:
with backend.name_scope(f"adjust_reduction_block_{block_id}"):
p = layers.Activation("relu", name=f"adjust_relu_1_{block_id}")(
p
)
p1 = layers.AveragePooling2D(
(1, 1),
strides=(2, 2),
padding="valid",
name=f"adjust_avg_pool_1_{block_id}",
)(p)
p1 = layers.Conv2D(
filters // 2,
(1, 1),
padding="same",
use_bias=False,
name=f"adjust_conv_1_{block_id}",
kernel_initializer="he_normal",
)(p1)
p2 = layers.ZeroPadding2D(padding=((0, 1), (0, 1)))(p)
p2 = layers.Cropping2D(cropping=((1, 0), (1, 0)))(p2)
p2 = layers.AveragePooling2D(
(1, 1),
strides=(2, 2),
padding="valid",
name=f"adjust_avg_pool_2_{block_id}",
)(p2)
p2 = layers.Conv2D(
filters // 2,
(1, 1),
padding="same",
use_bias=False,
name=f"adjust_conv_2_{block_id}",
kernel_initializer="he_normal",
)(p2)
p = layers.concatenate([p1, p2], axis=channel_dim)
p = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name=f"adjust_bn_{block_id}",
)(p)
elif p_shape[channel_dim] != filters:
with backend.name_scope(f"adjust_projection_block_{block_id}"):
p = layers.Activation("relu")(p)
p = layers.Conv2D(
filters,
(1, 1),
strides=(1, 1),
padding="same",
name=f"adjust_conv_projection_{block_id}",
use_bias=False,
kernel_initializer="he_normal",
)(p)
p = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name=f"adjust_bn_{block_id}",
)(p)
return p
def _normal_a_cell(ip, p, filters, block_id=None):
"""Adds a Normal cell for NASNet-A (Fig. 4 in the paper).
Args:
ip: Input tensor `x`
p: Input tensor `p`
filters: Number of output filters
block_id: String block_id
Returns:
A Keras tensor
"""
channel_dim = 1 if backend.image_data_format() == "channels_first" else -1
with backend.name_scope(f"normal_A_block_{block_id}"):
p = _adjust_block(p, ip, filters, block_id)
h = layers.Activation("relu")(ip)
h = layers.Conv2D(
filters,
(1, 1),
strides=(1, 1),
padding="same",
name=f"normal_conv_1_{block_id}",
use_bias=False,
kernel_initializer="he_normal",
)(h)
h = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name=f"normal_bn_1_{block_id}",
)(h)
with backend.name_scope("block_1"):
x1_1 = _separable_conv_block(
h,
filters,
kernel_size=(5, 5),
block_id=f"normal_left1_{block_id}",
)
x1_2 = _separable_conv_block(
p, filters, block_id=f"normal_right1_{block_id}"
)
x1 = layers.add([x1_1, x1_2], name=f"normal_add_1_{block_id}")
with backend.name_scope("block_2"):
x2_1 = _separable_conv_block(
p, filters, (5, 5), block_id=f"normal_left2_{block_id}"
)
x2_2 = _separable_conv_block(
p, filters, (3, 3), block_id=f"normal_right2_{block_id}"
)
x2 = layers.add([x2_1, x2_2], name=f"normal_add_2_{block_id}")
with backend.name_scope("block_3"):
x3 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding="same",
name=f"normal_left3_{block_id}",
)(h)
x3 = layers.add([x3, p], name=f"normal_add_3_{block_id}")
with backend.name_scope("block_4"):
x4_1 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding="same",
name=f"normal_left4_{block_id}",
)(p)
x4_2 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding="same",
name=f"normal_right4_{block_id}",
)(p)
x4 = layers.add([x4_1, x4_2], name=f"normal_add_4_{block_id}")
with backend.name_scope("block_5"):
x5 = _separable_conv_block(
h, filters, block_id=f"normal_left5_{block_id}"
)
x5 = layers.add([x5, h], name=f"normal_add_5_{block_id}")
x = layers.concatenate(
[p, x1, x2, x3, x4, x5],
axis=channel_dim,
name=f"normal_concat_{block_id}",
)
return x, ip
def _reduction_a_cell(ip, p, filters, block_id=None):
"""Adds a Reduction cell for NASNet-A (Fig. 4 in the paper).
Args:
ip: Input tensor `x`
p: Input tensor `p`
filters: Number of output filters
block_id: String block_id
Returns:
A Keras tensor
"""
channel_dim = 1 if backend.image_data_format() == "channels_first" else -1
with backend.name_scope(f"reduction_A_block_{block_id}"):
p = _adjust_block(p, ip, filters, block_id)
h = layers.Activation("relu")(ip)
h = layers.Conv2D(
filters,
(1, 1),
strides=(1, 1),
padding="same",
name=f"reduction_conv_1_{block_id}",
use_bias=False,
kernel_initializer="he_normal",
)(h)
h = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name=f"reduction_bn_1_{block_id}",
)(h)
h3 = layers.ZeroPadding2D(
padding=imagenet_utils.correct_pad(h, 3),
name=f"reduction_pad_1_{block_id}",
)(h)
with backend.name_scope("block_1"):
x1_1 = _separable_conv_block(
h,
filters,
(5, 5),
strides=(2, 2),
block_id=f"reduction_left1_{block_id}",
)
x1_2 = _separable_conv_block(
p,
filters,
(7, 7),
strides=(2, 2),
block_id=f"reduction_right1_{block_id}",
)
x1 = layers.add([x1_1, x1_2], name=f"reduction_add_1_{block_id}")
with backend.name_scope("block_2"):
x2_1 = layers.MaxPooling2D(
(3, 3),
strides=(2, 2),
padding="valid",
name=f"reduction_left2_{block_id}",
)(h3)
x2_2 = _separable_conv_block(
p,
filters,
(7, 7),
strides=(2, 2),
block_id=f"reduction_right2_{block_id}",
)
x2 = layers.add([x2_1, x2_2], name=f"reduction_add_2_{block_id}")
with backend.name_scope("block_3"):
x3_1 = layers.AveragePooling2D(
(3, 3),
strides=(2, 2),
padding="valid",
name=f"reduction_left3_{block_id}",
)(h3)
x3_2 = _separable_conv_block(
p,
filters,
(5, 5),
strides=(2, 2),
block_id=f"reduction_right3_{block_id}",
)
x3 = layers.add([x3_1, x3_2], name=f"reduction_add3_{block_id}")
with backend.name_scope("block_4"):
x4 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding="same",
name=f"reduction_left4_{block_id}",
)(x1)
x4 = layers.add([x2, x4])
with backend.name_scope("block_5"):
x5_1 = _separable_conv_block(
x1, filters, (3, 3), block_id=f"reduction_left4_{block_id}"
)
x5_2 = layers.MaxPooling2D(
(3, 3),
strides=(2, 2),
padding="valid",
name=f"reduction_right5_{block_id}",
)(h3)
x5 = layers.add([x5_1, x5_2], name=f"reduction_add4_{block_id}")
x = layers.concatenate(
[x2, x3, x4, x5],
axis=channel_dim,
name=f"reduction_concat_{block_id}",
)
return x, ip
@keras_export("keras.applications.nasnet.preprocess_input")
def preprocess_input(x, data_format=None):
return imagenet_utils.preprocess_input(
x, data_format=data_format, mode="tf"
)
@keras_export("keras.applications.nasnet.decode_predictions")
def decode_predictions(preds, top=5):
return imagenet_utils.decode_predictions(preds, top=top)
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
mode="",
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC,
)
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__