Implementation-neuron-model #28
@ -7,36 +7,37 @@ import random
|
||||
|
||||
|
||||
class VacuumRecognizer:
|
||||
model = keras.models.load_model("D:/Image_dataset/model.h5")
|
||||
model = keras.models.load_model('AI_brain\model.h5')
|
||||
|
||||
def recognize(self, image_path) -> str:
|
||||
class_names = ['Banana', 'Cat', 'Earings', 'Plant']
|
||||
|
||||
img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE)
|
||||
# print(img.shape)
|
||||
cv2.imshow("lala", img)
|
||||
cv2.waitKey(0)
|
||||
img = (np.expand_dims(img, 0))
|
||||
|
||||
predictions = self.model.predict(img)[0].tolist()
|
||||
|
||||
print(class_names)
|
||||
print(predictions)
|
||||
print(max(predictions))
|
||||
print(predictions.index(max(predictions)))
|
||||
# print(img.shape)
|
||||
# cv2.imshow("test_show", img)
|
||||
# print(class_names)
|
||||
# print(predictions)
|
||||
# print(max(predictions))
|
||||
# print(predictions.index(max(predictions)))
|
||||
|
||||
return class_names[predictions.index(max(predictions))]
|
||||
|
||||
|
||||
image_paths = []
|
||||
image_paths.append('D:/Image_dataset/Image_datasetJPGnewBnW/Image_datasetJPGnewBnW/test/Banana/')
|
||||
image_paths.append('D:/Image_dataset/Image_datasetJPGnewBnW/Image_datasetJPGnewBnW/test/Cat/')
|
||||
image_paths.append('D:/Image_dataset/Image_datasetJPGnewBnW/Image_datasetJPGnewBnW/test/Earings/')
|
||||
image_paths.append('D:/Image_dataset/Image_datasetJPGnewBnW/Image_datasetJPGnewBnW/test/Plant/')
|
||||
uio = VacuumRecognizer()
|
||||
|
||||
#For testing the neuron model
|
||||
'''image_paths = []
|
||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Banana')
|
||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Cat')
|
||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Earings')
|
||||
image_paths.append('C:\\Users\\Pavel\\Desktop\\AI\\Machine_learning_2023\\AI_brain\\Image_datasetJPGnewBnW\\check\\Plant')
|
||||
uio = VacuumRecognizer()
|
||||
|
||||
for image_path in image_paths:
|
||||
dirs = os.listdir(image_path)
|
||||
for i in range(10):
|
||||
print(uio.recognize(image_path + dirs[random.randint(0, len(dirs)-1)]))
|
||||
for i in range(3):
|
||||
print(uio.recognize(image_path + '\\' + dirs[random.randint(0, len(dirs)-1)]))'''
|
@ -15,14 +15,14 @@ class World:
|
||||
self.doc_station = None
|
||||
|
||||
def add_entity(self, entity: Entity):
|
||||
if entity.type == "PEEL":
|
||||
if entity.type == "DOC_STATION":
|
||||
self.doc_station = entity
|
||||
elif entity.type == "PEEL":
|
||||
self.dust[entity.x][entity.y].append(entity)
|
||||
elif entity.type == "EARRING":
|
||||
self.dust[entity.x][entity.y].append(entity)
|
||||
elif entity.type == "VACUUM":
|
||||
self.vacuum = entity
|
||||
elif entity.type == "DOC_STATION":
|
||||
self.doc_station = entity
|
||||
elif entity.type == "CAT":
|
||||
self.cat = entity
|
||||
self.obstacles[entity.x][entity.y].append(entity)
|
||||
|
Loading…
Reference in New Issue
Block a user