forked from s474139/Inteligentny_Wozek
neural network model + datasetconverter
This commit is contained in:
parent
9b1d9c1f13
commit
28b120769d
17
NeuralNetwork/neural_network_learning.py
Normal file
17
NeuralNetwork/neural_network_learning.py
Normal file
@ -0,0 +1,17 @@
|
||||
from src.torchvision_resize_dataset import combined_dataset
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import datasets
|
||||
from torchvision.transforms import Compose, Lambda, ToTensor
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
train_loader = DataLoader(
|
||||
combined_dataset, #dataset of images
|
||||
batch_size=256, # accuracy
|
||||
shuffle=True # rand order
|
||||
)
|
||||
classes = ["package", "list"]
|
||||
|
58
NeuralNetwork/src/data_model.py
Normal file
58
NeuralNetwork/src/data_model.py
Normal file
@ -0,0 +1,58 @@
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
|
||||
|
||||
class DataModel(nn.Module):
|
||||
def __init__(self, num_objects):
|
||||
super(DataModel, self).__init__()
|
||||
#input (batch=256, nr of channels rgb=3 , size=244x244)
|
||||
|
||||
# convolution
|
||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
|
||||
#shape (256, 12, 244x244)
|
||||
|
||||
# batch normalization
|
||||
self.bn1 = nn.BatchNorm2d(num_features=12)
|
||||
#shape (256, 12, 244x244)
|
||||
self.reul1 = nn.ReLU()
|
||||
|
||||
self.pool=nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
# reduce image size by factor 2
|
||||
# pooling window moves by 2 pixels at a time instead of 1
|
||||
# shape (256, 12, 122x122)
|
||||
|
||||
|
||||
|
||||
self.conv2 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=3, stride=1, padding=1)
|
||||
self.bn2 = nn.BatchNorm2d(num_features=24)
|
||||
self.reul2 = nn.ReLU()
|
||||
# shape (256, 24, 122x122)
|
||||
|
||||
self.conv3 = nn.Conv2d(in_channels=24, out_channels=48, kernel_size=3, stride=1, padding=1)
|
||||
#shape (256, 48, 122x122)
|
||||
self.bn3 = nn.BatchNorm2d(num_features=48)
|
||||
#shape (256, 48, 122x122)
|
||||
self.reul3 = nn.ReLU()
|
||||
|
||||
# connected layer
|
||||
self.fc = nn.Linear(in_features=48*122*122, out_features=num_objects)
|
||||
|
||||
def forward(self, input):
|
||||
output = self.conv1(input)
|
||||
output = self.bn1(output)
|
||||
output = self.reul1(output)
|
||||
|
||||
output = self.pool(output)
|
||||
output = self.conv2(output)
|
||||
output = self.bn2(output)
|
||||
output = self.reul2(output)
|
||||
|
||||
output = self.conv3(output)
|
||||
output = self.bn3(output)
|
||||
output = self.reul3(output)
|
||||
|
||||
# output shape matrix (256, 48, 122x122)
|
||||
output = output.view(-1, 48*122*122)
|
||||
output = self.fc(output)
|
||||
|
||||
return output
|
22
NeuralNetwork/src/torchvision_resize_dataset.py
Normal file
22
NeuralNetwork/src/torchvision_resize_dataset.py
Normal file
@ -0,0 +1,22 @@
|
||||
import torchvision.transforms as transforms
|
||||
from torchvision.datasets import ImageFolder
|
||||
from torch.utils.data import ConcatDataset
|
||||
import os
|
||||
|
||||
# images have to be the same size for the algorithm to work
|
||||
transform = transforms.Compose([
|
||||
transforms.Resize((224, 224)), # Resize images to (224, 224)
|
||||
transforms.ToTensor(), # Convert images to tensors, 0-255 to 0-1
|
||||
# transforms.RandomHorizontalFlip(), # 0.5 chance to flip the image
|
||||
transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
|
||||
])
|
||||
|
||||
letters_path = './letters'
|
||||
package_path = './package'
|
||||
|
||||
# # Load images from folders
|
||||
letter_folder = ImageFolder(letters_path, transform=transform)
|
||||
package_folder = ImageFolder(package_path, transform=transform)
|
||||
|
||||
# Combine the both datasets into a single dataset
|
||||
combined_dataset = ConcatDataset([letter_folder, package_folder])
|
Loading…
Reference in New Issue
Block a user