grafika_komputerowa/grk/project/Spaceship.h

374 lines
12 KiB
C++
Raw Blame History

#include "glm.hpp"
#include "ext.hpp"
#include <GLFW/glfw3.h>
#include <list>
#include "Bullet.h"
#include "ParticleSystem.h"
#include "GameEntity.h"
#pragma once
class Spaceship : public GameEntity
{
private:
std::list<Bullet*> bullets;
float lastShootTime = 0.f;
float shootInterval = 0.3f;
ParticleSystem* leftParticle;
ParticleSystem* rightParticle;
// Prywatny konstruktor, aby zapobiec zewn<77>trznemu tworzeniu instancji
Spaceship() : GameEntity(100.0f, 100.0f, 10.0f)
{
}
// Prywatny destruktor, aby zapobiec przypadkowemu usuwaniu instancji
~Spaceship() {}
public:
static Spaceship* getInstance()
{
static Spaceship instance; // Jedna i jedyna instancja
return &instance;
}
glm::vec3 color = glm::vec3(0.3, 0.3, 0.5);
float roughness = 0.2;
float metallic = 1.0;
glm::vec3 spaceshipPos /*= glm::vec3(0.065808f, 1.250000f, -2.189549f)*/;
glm::vec3 spaceshipDir = glm::vec3(-0.490263f, 0.000000f, 0.871578f);
glm::vec3 spotlightPos = glm::vec3(0, 0, 0);
glm::vec3 spotlightConeDir = glm::vec3(0, 0, 0);
glm::vec3 spotlightColor = glm::vec3(0.4, 0.4, 0.9) * 3;
float spotlightPhi = 3.14 / 4;
glm::vec3 cameraPos = glm::vec3(0.479490f, 1.250000f, -2.124680f);
glm::vec3 cameraDir = glm::vec3(-0.354510f, 0.000000f, 0.935054f);
glm::vec3 cameraPosHUDBar = glm::vec3(0.479490f, 1.250000f, -2.124680f);
glm::mat4 additionalHorRotationMatrix;
glm::mat4 additionalVerRotationMatrix;
glm::mat4 calculateModelMatrix() {
glm::vec3 spaceshipSide = glm::normalize(glm::cross(spaceshipDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 spaceshipUp = glm::normalize(glm::cross(spaceshipSide, spaceshipDir));
glm::mat4 spaceshipCameraRotationMatrix = glm::mat4({
spaceshipSide.x, spaceshipSide.y, spaceshipSide.z, 0,
spaceshipUp.x, spaceshipUp.y, spaceshipUp.z, 0,
-spaceshipDir.x, -spaceshipDir.y, -spaceshipDir.z, 0,
0., 0., 0., 1.
});
float additionalVerRotationAngle = glm::radians(currentShipVerAngle);
additionalVerRotationMatrix = glm::rotate(glm::mat4(1.0f), additionalVerRotationAngle, glm::vec3(1.f, 0.f, 0.f));
float additionalHorRotationAngle = glm::radians(currentShipHorAngle);
additionalHorRotationMatrix = glm::rotate(glm::mat4(1.0f), additionalHorRotationAngle, glm::vec3(0.f, 0.2f, 1.f));
glm::mat4 modelMatrix = glm::translate(spaceshipPos) * spaceshipCameraRotationMatrix * additionalVerRotationMatrix * additionalHorRotationMatrix * glm::eulerAngleY(glm::pi<float>()) * glm::scale(glm::vec3(0.02f));
return modelMatrix;
}
void setPerticlesParameters(float speed, float generationInterval) {
leftParticle->speed = speed;
leftParticle->generationInterval = generationInterval;
rightParticle->speed = speed;
rightParticle->generationInterval = generationInterval;
}
const float fromCameraDirHorizontalStateToStateTime = 0.2f;
const float CAMERA_DISTANCE_STATIC_HOR = 0.7f;
const float CAMERA_DISTANCE_SLOW_HOR = 0.85f;
const float CAMERA_DISTANCE_FAST_HOR = 1.f;
float currentCameraDistanceHor = CAMERA_DISTANCE_STATIC_HOR;
float targetCameraDistanceHor = CAMERA_DISTANCE_STATIC_HOR;
int currentWState = 0;
int currentShiftState = 0;
float calculateCameraDistanceHor(int wState, int shiftState, float time) {
currentWState = wState;
currentShiftState = shiftState;
if (currentWState == 1 && currentShiftState == 0) {
targetCameraDistanceHor = CAMERA_DISTANCE_SLOW_HOR;
}
else if (currentWState == 1 && currentShiftState == 1) {
targetCameraDistanceHor = CAMERA_DISTANCE_FAST_HOR;
}
else {
targetCameraDistanceHor = CAMERA_DISTANCE_STATIC_HOR;
}
float diff = targetCameraDistanceHor - currentCameraDistanceHor;
float step = diff / fromCameraDirHorizontalStateToStateTime * time;
currentCameraDistanceHor += step;
return currentCameraDistanceHor;
}
const float fromCameraDirVerticalStateToStateTime = 0.2f;
const float CAMERA_DISTANCE_STATIC_VER = 0.2f;
const float CAMERA_DISTANCE_SLOW_VER = 0.25f;
const float CAMERA_DISTANCE_FAST_VER = 0.3f;
float currentCameraDistanceVer = CAMERA_DISTANCE_STATIC_VER;
float targetCameraDistanceVer = CAMERA_DISTANCE_STATIC_VER;
float calculateCameraDistanceVer(float time) {
if (currentWState == 1 && currentShiftState == 0) {
targetCameraDistanceVer = CAMERA_DISTANCE_SLOW_VER;
}
else if (currentWState == 1 && currentShiftState == 1) {
targetCameraDistanceVer = CAMERA_DISTANCE_FAST_VER;
}
else {
targetCameraDistanceVer = CAMERA_DISTANCE_STATIC_VER;
}
float diff = targetCameraDistanceVer - currentCameraDistanceVer;
float step = diff / fromCameraDirVerticalStateToStateTime * time;
currentCameraDistanceVer += step;
return currentCameraDistanceVer;
}
const float MAX_VERTICAL_ANGLE = 15.f;
float currentShipVerAngle = 0.f;
float targetShipVerAngle = 0.f;
int currentQState = 0;
int currentEState = 0;
float calculateShipAngleVer(int qState, int eState, float time) {
currentQState = qState;
currentEState = eState;
if (currentQState == 1) {
targetShipVerAngle = MAX_VERTICAL_ANGLE;
}
else if (currentEState == 1) {
targetShipVerAngle = -MAX_VERTICAL_ANGLE;
}
else {
targetShipVerAngle = 0.f;
}
float diff = targetShipVerAngle - currentShipVerAngle;
float step = diff / 0.2f * time;
currentShipVerAngle += step;
return currentShipVerAngle;
}
const float MAX_HORIZONTALL_ANGLE = 15.f;
float currentShipHorAngle = 0.f;
float targetShipHorAngle = 0.f;
int currentAState = 0;
int currentDState = 0;
float calculateShipAngleHor(int aState, int dState, float time) {
currentAState = aState;
currentDState = dState;
if (currentAState == 1) {
targetShipHorAngle = MAX_HORIZONTALL_ANGLE;
}
else if (currentDState == 1) {
targetShipHorAngle = -MAX_HORIZONTALL_ANGLE;
}
else {
targetShipHorAngle = 0.f;
}
float diff = targetShipHorAngle - currentShipHorAngle;
float step = diff / 0.2f * time;
currentShipHorAngle += step;
return currentShipHorAngle;
}
void processInput(GLFWwindow* window, float deltaTime, float time) {
static bool mouseButtonCallbackSet = false;
if (!mouseButtonCallbackSet) {
}
glm::vec3 spaceshipSide = glm::normalize(glm::cross(spaceshipDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 spaceshipUp = glm::vec3(0.f, 1.f, 0.f);
float angleSpeed = 0.05f * deltaTime * 60;
float moveSpeed = 0.05f * deltaTime * 60;
int w = glfwGetKey(window, GLFW_KEY_W);
int s = glfwGetKey(window, GLFW_KEY_S);
int shiftState = glfwGetKey(window, GLFW_KEY_LEFT_SHIFT);
int qState = glfwGetKey(window, GLFW_KEY_Q);
int eState = glfwGetKey(window, GLFW_KEY_E);
int aState = glfwGetKey(window, GLFW_KEY_A);
int dState = glfwGetKey(window, GLFW_KEY_D);
calculateShipAngleVer(qState, eState, deltaTime);
calculateShipAngleHor(aState, dState, deltaTime);
//spaceshipDir = glm::vec3(glm::eulerAngleX(verticalAngle) * glm::vec4(spaceshipDir, 0));
if (w == GLFW_PRESS) {
if (shiftState == GLFW_PRESS) {
moveSpeed *= 2;
setPerticlesParameters(200.f, 0.00005f);
}
else {
setPerticlesParameters(100.f, 0.0001f);
}
}
else {
setPerticlesParameters(50.f, 0.0002f);
}
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {
glfwSetWindowShouldClose(window, true);
}
if (w == GLFW_PRESS)
spaceshipPos += spaceshipDir * moveSpeed;
if (s == GLFW_PRESS)
spaceshipPos -= spaceshipDir * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_X) == GLFW_PRESS)
spaceshipPos += spaceshipSide * moveSpeed;
if (glfwGetKey(window, GLFW_KEY_Z) == GLFW_PRESS)
spaceshipPos -= spaceshipSide * moveSpeed;
if (qState == GLFW_PRESS)
spaceshipPos += spaceshipUp * moveSpeed;
if (eState == GLFW_PRESS)
spaceshipPos -= spaceshipUp * moveSpeed;
if (aState == GLFW_PRESS)
spaceshipDir = glm::vec3(glm::eulerAngleY(angleSpeed) * glm::vec4(spaceshipDir, 0));
if (dState == GLFW_PRESS)
spaceshipDir = glm::vec3(glm::eulerAngleY(-angleSpeed) * glm::vec4(spaceshipDir, 0));
if (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_LEFT) == GLFW_PRESS)
requestShoot(time);
cameraPos = spaceshipPos - calculateCameraDistanceHor(w, shiftState, deltaTime) * spaceshipDir + glm::vec3(0, calculateCameraDistanceVer(deltaTime), 0);
cameraPosHUDBar = spaceshipPos - 1.f * spaceshipDir + glm::vec3(0, 1, 0) * 0.2f;
cameraDir = spaceshipDir;
glm::vec3 perpendicularVector = 0.04f * glm::normalize(glm::cross(spaceshipDir, glm::vec3(0.0f, 1.0f, 0.0f)));
if (leftParticle != nullptr && rightParticle != nullptr) {
leftParticle->sourcePosition = spaceshipPos + perpendicularVector - (0.25f * spaceshipDir);
rightParticle->sourcePosition = spaceshipPos - perpendicularVector - (0.25f * spaceshipDir);
leftParticle->sourceDirection = -spaceshipDir;
rightParticle->sourceDirection = -spaceshipDir;
}
spotlightPos = spaceshipPos + 0.2 * spaceshipDir;
spotlightConeDir = spaceshipDir;
}
void renderParticles(GLuint program, glm::mat4 view, glm::mat4 projection, float time) {
if (leftParticle != nullptr && rightParticle != nullptr) {
glm::mat4 modelSrc = additionalVerRotationMatrix * additionalHorRotationMatrix;
leftParticle->drawParticles(program, view, projection, modelSrc, time);
rightParticle->drawParticles(program, view, projection, modelSrc, time);
}
}
void createParticles() {
if (leftParticle != nullptr && rightParticle != nullptr) {
delete leftParticle;
delete rightParticle;
}
leftParticle = new ParticleSystem();
rightParticle = new ParticleSystem();
}
glm::mat4 createCameraMatrix()
{
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 cameraUp = glm::normalize(glm::cross(cameraSide, cameraDir));
glm::mat4 cameraRotrationMatrix = glm::mat4({
cameraSide.x,cameraSide.y,cameraSide.z,0,
cameraUp.x,cameraUp.y,cameraUp.z ,0,
-cameraDir.x,-cameraDir.y,-cameraDir.z,0,
0.,0.,0.,1.,
});
cameraRotrationMatrix = glm::transpose(cameraRotrationMatrix);
glm::mat4 cameraMatrix = cameraRotrationMatrix * glm::translate(-cameraPos);
return cameraMatrix;
}
void renderBullets(float time, GLuint program, std::vector<GameEntity*>& gameEntities) {
for (auto it = bullets.begin(); it != bullets.end();) {
Bullet* bullet = *it;
if (bullet->shouldBeDestroyed(time, program, gameEntities, dmg)) {
delete bullet;
it = bullets.erase(it);
}
else {
it++;
}
}
}
void requestShoot(float time) {
if (canShoot(time)) {
shoot(time);
}
}
bool canShoot(float time) {
return lastShootTime == 0 || time - lastShootTime > shootInterval;
}
void shoot(float time) {
glm::vec3 perpendicularVector = 0.25f * glm::normalize(glm::cross(cameraDir, glm::vec3(0.0f, 1.0f, 0.0f)));
glm::vec3 dir = glm::vec4(spaceshipDir.x, spaceshipDir.y, spaceshipDir.z, 1.f) * additionalVerRotationMatrix * additionalHorRotationMatrix;
bullets.push_back(Bullet::createSimpleBullet(dir, spaceshipPos - perpendicularVector, time));
bullets.push_back(Bullet::createSimpleBullet(dir, spaceshipPos + perpendicularVector, time));
lastShootTime = time;
}
glm::vec3 getPosition() const override {
return spaceshipPos;
}
glm::mat4 getModelMatrix() override {
return calculateModelMatrix();
}
glm::mat4 calculateModelMatrixForHUDBar() {
glm::vec3 spaceshipSide = glm::normalize(glm::cross(spaceshipDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 spaceshipUp = glm::normalize(glm::cross(spaceshipSide, spaceshipDir));
glm::mat4 spaceshipCameraRotationMatrix = glm::mat4({
spaceshipSide.x, spaceshipSide.y, spaceshipSide.z, 0,
spaceshipUp.x, spaceshipUp.y, spaceshipUp.z, 0,
-spaceshipDir.x, -spaceshipDir.y, -spaceshipDir.z, 0,
0., 0., 0., 1.
});
return glm::translate(spaceshipPos) * spaceshipCameraRotationMatrix * glm::eulerAngleY(glm::pi<float>()) * glm::scale(glm::vec3(0.02f));
}
glm::mat4 createCameraMatrixForHUDBar()
{
glm::vec3 cameraSide = glm::normalize(glm::cross(cameraDir, glm::vec3(0.f, 1.f, 0.f)));
glm::vec3 cameraUp = glm::normalize(glm::cross(cameraSide, cameraDir));
glm::mat4 cameraRotrationMatrix = glm::mat4({
cameraSide.x,cameraSide.y,cameraSide.z,0,
cameraUp.x,cameraUp.y,cameraUp.z ,0,
-cameraDir.x,-cameraDir.y,-cameraDir.z,0,
0.,0.,0.,1.,
});
cameraRotrationMatrix = glm::transpose(cameraRotrationMatrix);
glm::mat4 cameraMatrix = cameraRotrationMatrix * glm::translate(-cameraPosHUDBar);
return cameraMatrix;
}
};