Compare commits

..

51 Commits

Author SHA1 Message Date
b19778b796 Merge pull request 'Zmiana błędu w konstruktorze successor' (#37) from minor_upgrades into master
Reviewed-on: #37
2023-06-19 11:54:22 +02:00
majkellll
15839b4bc4 Zmiana błędu w konstruktorze successor 2023-06-19 11:54:14 +02:00
216de52583 Merge pull request 'recognize_garbage_photos' (#36) from recognize_garbage_photos into master
Reviewed-on: #36
2023-06-19 11:52:43 +02:00
Pawel Felcyn
58b53f5817 recognizing garbage 2023-06-18 21:01:45 +02:00
Pawel Felcyn
2d7ed16185 neuron network model 2023-06-17 18:33:23 +02:00
Pawel Felcyn
c267515ee1 rename test photos 2023-06-17 17:14:24 +02:00
Pawel Felcyn
aefba8e784 move test photos up 2023-06-17 17:08:30 +02:00
0824aaa0cf Merge pull request 'added neural network and model' (#35) from neuralNetwork into master
Reviewed-on: #35
2023-06-17 17:00:52 +02:00
maks
aa401ea87c added Neural network and model 2023-06-17 16:52:21 +02:00
73f6396a29 Delete 'machine_learning/neuralNetwork.py' 2023-06-17 16:52:17 +02:00
a21aa44601 Upload files to 'machine_learning' 2023-06-17 16:52:17 +02:00
6a364be40e Merge pull request 'Added photos of outside of train set' (#34) from trash_photos into master
Reviewed-on: #34
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-06-05 08:19:05 +02:00
2727588f82 Merge branch 'master' into trash_photos 2023-06-05 08:18:51 +02:00
majkellll
aef7b97b28 Added photos of outside of train set 2023-06-04 20:06:33 +02:00
d6ec2cda4c Merge pull request 'Added photos of garbage' (#33) from trash_photos into master
Reviewed-on: #33
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-06-04 08:48:17 +02:00
majkellll
def9f33cf4 Added photos of garbage 2023-06-03 23:00:06 +02:00
b997927e5d Merge pull request 'collecting_garbage' (#32) from collecting_garbage into master
Reviewed-on: #32
2023-06-03 14:43:15 +02:00
38c66cea53 strip classes 2023-05-29 12:00:46 +02:00
Pawel Felcyn
43c13acdee recognizing garbage 2023-05-29 09:57:52 +02:00
26bcc9ddf1 Merge pull request 'training data update' (#30) from s464933-patch-1 into master
Reviewed-on: #30
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-05-28 18:01:20 +02:00
Pawel Felcyn
301384ed80 model 2023-05-28 18:00:41 +02:00
5a56d61a5f training data update 2023-05-28 18:00:11 +02:00
5e2b673196 Merge pull request 'more trainig examples, model training' (#31) from decision_tree into master
Reviewed-on: #31
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-05-28 17:32:37 +02:00
Wiktor Szynaka
5339fbbe82 more trainig examples, model training 2023-05-28 02:50:07 +02:00
24f4c60e37 Merge pull request 'filled each garbage can with 4 pieces of garbage' (#28) from cvs_wypelnienie_smietnika into master
Reviewed-on: #28
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-05-27 14:58:33 +02:00
majkellll
d8e34ad65b delated test methods 2023-05-27 13:46:44 +02:00
majkellll
a1f2e4b298 garbage_pieces_counter 2023-05-27 13:45:31 +02:00
majkellll
f79fa2ee66 dodany przecinek 2023-05-27 13:35:39 +02:00
majkellll
1e5a1b9254 filled each garbage can with 4 pieces of garbage 2023-05-27 13:16:41 +02:00
c8bcea171e Merge pull request 'read csv with training data' (#27) from read_training_data into master
Reviewed-on: #27
2023-05-27 11:34:58 +02:00
Pawel Felcyn
6a05f59d97 read csv with training data 2023-05-27 11:34:26 +02:00
f60ed5d28f Merge pull request 'add training data pf' (#26) from pf_training_data into master
Reviewed-on: #26
2023-05-27 11:02:51 +02:00
Pawel Felcyn
4589d3a49c add training data pf 2023-05-27 11:01:22 +02:00
9287f76ea3 Merge pull request 'A_star' (#25) from A_star into master
Reviewed-on: #25
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-05-25 18:52:06 +02:00
majkellll
271e3365f9 A* gawor done 2023-05-25 18:18:11 +02:00
majkellll
aacee0e493 Merge remote-tracking branch 'origin/A_star' into A_star
# Conflicts:
#	bfs.py
#	main.py
#	movement.py
2023-05-15 11:50:30 +02:00
majkellll
15638862d3 A* working ok 2023-05-15 11:49:58 +02:00
majkellll
af32df4474 dodany A* - coś jeszcze nie działa 2023-05-15 11:04:09 +02:00
Pawel Felcyn
311a2d0757 astar for MIkołaj Gawor 2023-05-15 10:59:30 +02:00
majkellll
5440626353 dodany A* - coś jeszcze nie działa 2023-05-15 08:07:08 +02:00
dd34b7341a Merge pull request 'add heuristics' (#24) from heuristics into master
Reviewed-on: #24
2023-05-13 23:07:17 +02:00
Pawel Felcyn
c708663d39 add heuristics 2023-05-13 23:06:42 +02:00
65bef51958 Merge pull request 'SpeedBump' (#23) from SpeedBump into master
Reviewed-on: #23
Reviewed-by: Paweł Felcyn <pawfel1@st.amu.edu.pl>
2023-05-13 22:05:20 +02:00
Wiktor Szynaka
a2d6cc688b correction 2023-05-13 21:17:30 +02:00
Wiktor Szynaka
f7c91e92aa deleted empty can enum 2023-05-13 21:04:57 +02:00
Wiktor Szynaka
b25a36e872 action costs 2023-05-13 21:00:13 +02:00
Wiktor Szynaka
76eb4771a2 add action cost function and remove node class 2023-05-13 20:20:04 +02:00
Wiktor Szynaka
4ab84deaf3 speed bumps 2023-05-13 20:02:42 +02:00
Wiktor Szynaka
f0d6001efa speed bumps 2023-05-13 19:41:19 +02:00
Wiktor Szynaka
af42c84186 speed bumps 2023-05-13 19:30:00 +02:00
aec533956d Merge pull request 'landfill' (#22) from landfill into master
Reviewed-on: #22
2023-05-11 21:38:44 +02:00
13562 changed files with 753 additions and 88 deletions

3
.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
# Default ignored files
/shelf/
/workspace.xml

View File

@ -4,5 +4,4 @@ class AgentActionType (Enum):
MOVE_FORWARD = 0 MOVE_FORWARD = 0
TURN_LEFT = 1 TURN_LEFT = 1
TURN_RIGHT = 2 TURN_RIGHT = 2
EMPTY_CAN = 3
UNKNOWN = None UNKNOWN = None

View File

@ -7,4 +7,4 @@ class AgentState:
def __init__(self, position: Tuple[int, int], orientation: AgentOrientation) -> None: def __init__(self, position: Tuple[int, int], orientation: AgentOrientation) -> None:
self.orientation = orientation self.orientation = orientation
self.position = position self.position = position

174
bfs.py
View File

@ -1,95 +1,165 @@
from agentState import AgentState from agentState import AgentState
from typing import Dict, Tuple from typing import Dict, Tuple, List
from city import City
from gridCellType import GridCellType from gridCellType import GridCellType
from agentActionType import AgentActionType from agentActionType import AgentActionType
from agentOrientation import AgentOrientation from agentOrientation import AgentOrientation
from queue import Queue from queue import Queue, PriorityQueue
from turnCar import turn_left_orientation, turn_right_orientation from turnCar import turn_left_orientation, turn_right_orientation
class Succ:
state: AgentState
action: AgentActionType
def __init__(self, state: AgentState, action: AgentActionType) -> None: class Successor: # klasa reprezentuje sukcesora, stan i akcję którą można po nim podjąć
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
self.state = state self.state = state
self.action = action self.action = action
self.cost = cost
self.predicted_cost = predicted_cost
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> list[AgentActionType]:
q: Queue[list[Succ]] = Queue() class SuccessorList: # lista sukcesorów, czyli możliwych ścieżek po danym stanie
visited: list[AgentState] = [] succ_list: list[Successor]
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN)]
q.put(startStates) def __init__(self, succ_list: list[Successor]) -> None:
while not q.empty(): self.succ_list = succ_list
currently_checked = q.get()
visited.append(currently_checked[-1].state) def __gt__(self, other):
if is_state_success(currently_checked[-1].state, grid): return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
return extract_actions(currently_checked)
successors = succ(currently_checked[-1].state) def __lt__(self, other):
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[
AgentActionType]: # znajduje ścieżkę do najbliższego kosza na smieci
visited: List[AgentState] = []
queue: PriorityQueue[SuccessorList] = PriorityQueue() # kolejka priorytetowa przechodująca listę sukcesorów
queue.put(SuccessorList([Successor(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))]))
while not queue.empty(): # dopóki kolejka nie jest pusta, pobiera z niej aktualny element
current = queue.get()
previous = current.succ_list[-1]
visited.append(previous.state)
if is_state_success(previous.state, grid): # jeśli ostatni stan w liście jest stanem końcowym (agent dotarł do śmietnika)
return extract_actions(current)
successors = get_successors(previous, grid, city)
for s in successors: for s in successors:
already_visited = False already_visited = False
for v in visited: for v in visited:
if v.position[0] == s.state.position[0] and v.position[1] == s.state.position[1] and s.state.orientation == v.orientation: if v.position == s.state.position and v.orientation == s.state.orientation:
already_visited = True already_visited = True
break break
if already_visited: if already_visited:
continue continue
if is_state_valid(s.state, grid): if is_state_valid(s.state, grid):
new_list = currently_checked.copy() new_list = current.succ_list.copy()
new_list.append(s) new_list.append(s)
q.put(new_list) queue.put(SuccessorList(new_list))
return [] return []
def extract_actions(successors: SuccessorList) -> list[AgentActionType]: # wyodrębnienie akcji z listy sukcesorów, z pominięciem uknown
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
output: list[AgentActionType] = [] output: list[AgentActionType] = []
for s in successors: for s in successors.succ_list:
if s.action != AgentActionType.UNKNOWN: if s.action != AgentActionType.UNKNOWN:
output.append(s.action) output.append(s.action)
return output return output
def succ(state: AgentState) -> list[Succ]:
result: list[Succ] = [] def get_successors(succ: Successor, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[Successor]:
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT)) result: List[Successor] = [] # generuje następników dla danego stanu,
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT))
state_succ = move_forward_succ(state) turn_left_cost = 1 + succ.cost
if state_succ != None: turn_left_state = AgentState(succ.state.position, turn_left_orientation(succ.state.orientation))
result.append(move_forward_succ(state)) turn_left_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_left_state, AgentActionType.TURN_LEFT, turn_left_cost, turn_left_cost + turn_left_heuristics))
turn_right_cost = 1 + succ.cost
turn_right_state = AgentState(succ.state.position, turn_right_orientation(succ.state.orientation))
turn_right_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_right_state, AgentActionType.TURN_RIGHT, turn_right_cost,
turn_right_cost + turn_right_heuristics))
state_succ = move_forward_succ(succ, city, grid)
if state_succ is not None:
result.append(state_succ)
return result return result
def move_forward_succ(state: AgentState) -> Succ:
position = get_next_cell(state) def move_forward_succ(succ: Successor, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Successor:
if position == None: position = get_next_cell(succ.state)
if position is None:
return None return None
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD)
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
predicted_cost = cost + _heuristics(position, city)
new_state = AgentState(position, succ.state.orientation)
return Successor(new_state, AgentActionType.MOVE_FORWARD, cost, predicted_cost)
def get_next_cell(state: AgentState) -> Tuple[int, int]: def get_next_cell(state: AgentState) -> Tuple[int, int]:
if state.orientation == AgentOrientation.UP: x, y = state.position
if state.position[1] - 1 < 1: orientation = state.orientation
if orientation == AgentOrientation.UP:
if y - 1 < 1:
return None return None
return (state.position[0], state.position[1] - 1) return x, y - 1
if state.orientation == AgentOrientation.DOWN: elif orientation == AgentOrientation.DOWN:
if state.position[1] + 1 > 27: if y + 1 > 27:
return None return None
return (state.position[0], state.position[1] + 1) return x, y + 1
if state.orientation == AgentOrientation.LEFT: elif orientation == AgentOrientation.LEFT:
if state.position[0] - 1 < 1: if x - 1 < 1:
return None return None
return (state.position[0] - 1, state.position[1]) return x - 1, y
if state.position[0] + 1 > 27: elif x + 1 > 27:
return None return None
return (state.position[0] + 1, state.position[1]) else:
return x + 1, y
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool: def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
next_cell = get_next_cell(state) next_cell = get_next_cell(state)
try: try:
return grid[next_cell] == GridCellType.GARBAGE_CAN return grid[next_cell] == GridCellType.GARBAGE_CAN # agent dotarł do śmietnika
except: except KeyError:
return False return False
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
if action in [AgentActionType.TURN_LEFT, AgentActionType.TURN_RIGHT]:
return 1
if cell_type == GridCellType.SPEED_BUMP and action == AgentActionType.MOVE_FORWARD:
return -10000
if action == AgentActionType.MOVE_FORWARD:
return 3
def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool: def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
try: try:
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[state.position] == GridCellType.STREET_VERTICAL return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[
except: state.position] == GridCellType.STREET_VERTICAL or grid[state.position] == GridCellType.SPEED_BUMP
return False except KeyError:
return False
def _heuristics(position: Tuple[int, int], city: City):
min_distance: int = 300
found_nonvisited: bool = False
for can in city.cans:
if can.is_visited:
continue
found_nonvisited = True
distance = 3 * (abs(position[0] - can.position[0]) + abs(position[1] - can.position[1]))
if distance < min_distance:
min_distance = distance
if found_nonvisited:
return min_distance
return -1

38
city.py
View File

@ -1,38 +1,44 @@
from typing import List from typing import List, Dict, Tuple
from garbageCan import GarbageCan from garbageCan import GarbageCan
from speedBump import SpeedBump
from street import Street from street import Street
from gameContext import GameContext from gameContext import GameContext
class Node:
garbageCan: GarbageCan
id: int
def __init__(self, id: int, can: GarbageCan) -> None:
self.id
self.can = can
class City: class City:
nodes: List[GarbageCan] cans: List[GarbageCan]
bumps: List[SpeedBump]
streets: List[Street] streets: List[Street]
cans_dict: Dict[Tuple[int, int], GarbageCan] = {}
def __init__(self) -> None: def __init__(self) -> None:
self.nodes = [] self.cans = []
self.streets = [] self.streets = []
self.bumps = []
def add_can(self, can: GarbageCan) -> None:
self.cans.append(can)
self.cans_dict[can.position] = can
def add_node(self, node: GarbageCan) -> None:
self.nodes.append(node)
def add_street(self, street: Street) -> None: def add_street(self, street: Street) -> None:
self.streets.append(street) self.streets.append(street)
def add_bump(self, bump: SpeedBump) -> None:
self.streets.append(bump)
def render_city(self, game_context: GameContext) -> None: def render_city(self, game_context: GameContext) -> None:
self._render_streets(game_context) self._render_streets(game_context)
self._render_nodes(game_context) self._render_nodes(game_context)
self._render_bumps(game_context)
def _render_streets(self, game_context: GameContext) -> None: def _render_streets(self, game_context: GameContext) -> None:
for street in self.streets: for street in self.streets:
street.render(game_context) street.render(game_context)
def _render_nodes(self, game_context: GameContext) -> None: def _render_nodes(self, game_context: GameContext) -> None:
for node in self.nodes: for node in self.cans:
node.render(game_context) node.render(game_context)
def _render_bumps(self, game_context: GameContext) -> None:
for bump in self.bumps:
bump.render(game_context)

View File

@ -15,6 +15,8 @@ class GameContext:
grid: Dict[Tuple[int, int], GridCellType] = {} grid: Dict[Tuple[int, int], GridCellType] = {}
dust_car = None dust_car = None
landfill = None landfill = None
def __init__(self) -> None: def __init__(self) -> None:
self._init_grid() self._init_grid()

View File

@ -1,21 +1,41 @@
from enum import Enum from enum import Enum
class GarbageType (Enum):
class GarbageType(Enum):
PAPER = 0, PAPER = 0,
PLASTIC_AND_METAL = 1 PLASTIC_AND_METAL = 1
GLASS = 3 GLASS = 3
BIO = 4 BIO = 4
MIXED = 5 MIXED = 5
class Garbage: class Garbage:
img: str img: str
shape: str
flexibility: str
does_smell: str
weight: str
size: str
color: str
softness: str
does_din: str
def __init__(self, img: str) -> None: def __init__(self, img: str, shape: str, flexibility: str, does_smell: str, weight: str, size: str, color: str, softness: str, does_din: str) -> None:
self.img = img self.img = img
self.shape = shape
self.flexibility = flexibility
self.does_smell = does_smell
self.weight = weight
self.size = size
self.color = color
self.softness = softness
self.does_din = does_din
class RecognizedGarbage (Garbage):
class RecognizedGarbage:
garbage_type: GarbageType garbage_type: GarbageType
src: Garbage
def __init__(self, src: Garbage, garbage_type: GarbageType) -> None: def __init__(self, src: Garbage, garbage_type: GarbageType) -> None:
super().__init__(src.img) self.garbage_type = garbage_type
self.garbage_type = garbage_type self.src = src

View File

@ -3,13 +3,16 @@ from typing import List, Tuple
from gameContext import GameContext from gameContext import GameContext
from gridCellType import GridCellType from gridCellType import GridCellType
class GarbageCan: class GarbageCan:
position: Tuple[int, int] position: Tuple[int, int]
garbage: List[Garbage] garbage: List[Garbage]
is_visited: bool
def __init__(self, position: Tuple[int, int]) -> None: def __init__(self, position: Tuple[int, int]) -> None:
self.position = position self.position = position
self.garbage = [] self.garbage = []
self.is_visited = False
def add_garbage(self, garbage: Garbage) -> None: def add_garbage(self, garbage: Garbage) -> None:
self.garbage.append(garbage) self.garbage.append(garbage)
@ -17,6 +20,7 @@ class GarbageCan:
def remove_garbage(self, garbage: Garbage) -> None: def remove_garbage(self, garbage: Garbage) -> None:
self.garbage.remove(garbage) self.garbage.remove(garbage)
def render(self, game_context: GameContext) -> None: def render(self, game_context: GameContext) -> None:
game_context.render_in_cell(self.position, "imgs/container.png") game_context.render_in_cell(self.position, "imgs/container.png")
game_context.grid[self.position] = GridCellType.GARBAGE_CAN game_context.grid[self.position] = GridCellType.GARBAGE_CAN

View File

@ -1,6 +1,6 @@
from typing import List, Tuple from typing import List, Tuple
from agentOrientation import AgentOrientation from agentOrientation import AgentOrientation
from garbage import RecognizedGarbage from garbage import GarbageType, RecognizedGarbage
from gameContext import GameContext from gameContext import GameContext
class GarbageTruck: class GarbageTruck:
@ -22,19 +22,19 @@ class GarbageTruck:
def sort_garbage(self, RecognizedGarbage) -> None: def sort_garbage(self, RecognizedGarbage) -> None:
if RecognizedGarbage.garbage_type == 0: if RecognizedGarbage.garbage_type == GarbageType.PAPER:
self.paper.append(RecognizedGarbage) self.paper.append(RecognizedGarbage)
elif RecognizedGarbage.garbage_type == 1: elif RecognizedGarbage.garbage_type == GarbageType.PLASTIC_AND_METAL:
self.plastic_and_metal.append(RecognizedGarbage) self.plastic_and_metal.append(RecognizedGarbage)
elif RecognizedGarbage.garbage_type == 3: elif RecognizedGarbage.garbage_type == GarbageType.GLASS:
self.glass.append(RecognizedGarbage) self.glass.append(RecognizedGarbage)
elif RecognizedGarbage.garbage_type == 4: elif RecognizedGarbage.garbage_type == GarbageType.BIO:
self.bio.append(RecognizedGarbage) self.bio.append(RecognizedGarbage)
elif RecognizedGarbage.garbage_type == 5: elif RecognizedGarbage.garbage_type == GarbageType.MIXED:
self.mixed.append(RecognizedGarbage) self.mixed.append(RecognizedGarbage)
def render(self, game_context: GameContext) -> None: def render(self, game_context: GameContext) -> None:

View File

@ -6,4 +6,6 @@ class GridCellType(Enum):
STREET_HORIZONTAL = 2 STREET_HORIZONTAL = 2
GARBAGE_CAN = 3 GARBAGE_CAN = 3
VISITED_GARBAGE_CAN = 4 VISITED_GARBAGE_CAN = 4
LANDFILL = 5 LANDFILL = 5
SPEED_BUMP = 6
UNKNOWN = None

BIN
imgs/speed_bump.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 293 B

View File

@ -0,0 +1,95 @@
import os
from trainingData import TrainingData
from sklearn import tree
import joblib
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
import numpy as np
def _read_training_data() -> TrainingData:
attributes = []
classes = []
location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
file = open(os.path.join(location, 'training_data.csv'))
lines = file.readlines()[1:]
file.close()
for line in lines:
actual_row = line.replace('\n', '')
values = actual_row.split(',')
line_attributes = values[:-1]
line_class = values[-1]
attributes.append(line_attributes)
classes.append(line_class.strip())
return TrainingData(attributes, classes)
def _attributes_to_floats(attributes: list[str]) -> list[float]:
output: list[float] = []
if attributes[0] == 'Longitiudonal':
output.append(0)
elif attributes[0] == 'Round':
output.append(1)
elif attributes[0] == 'Flat':
output.append(2)
elif attributes[0] == 'Irregular':
output.append(3)
if attributes[1] == 'Low':
output.append(0)
elif attributes[1] == 'Medium':
output.append(1)
elif attributes[1] == 'High':
output.append(2)
if attributes[2] == "Yes":
output.append(0)
else:
output.append(1)
if attributes[3] == 'Low':
output.append(0)
elif attributes[3] == 'Medium':
output.append(1)
elif attributes[3] == 'High':
output.append(2)
if attributes[4] == 'Low':
output.append(0)
elif attributes[4] == 'Medium':
output.append(1)
elif attributes[4] == 'High':
output.append(2)
if attributes[5] == 'Transparent':
output.append(0)
elif attributes[5] == 'Light':
output.append(1)
elif attributes[5] == 'Dark':
output.append(2)
elif attributes[5] == "Colorful":
output.append(3)
if attributes[6] == 'Low':
output.append(0)
elif attributes[6] == 'Medium':
output.append(1)
elif attributes[6] == 'High':
output.append(2)
if attributes[7] == "Yes":
output.append(0)
else:
output.append(1)
return output
trainning_data = _read_training_data()
X = trainning_data.attributes
Y = trainning_data.classes
model = tree.DecisionTreeClassifier()
encoded = [_attributes_to_floats(x) for x in X]
dtc = model.fit(encoded, Y)
joblib.dump(model, 'model.pkl')

View File

@ -0,0 +1,29 @@
Shape,Flexibility,DoesSmell,Weight,Size,Color,Softness,DoesDin
Irregular,High,No,High,Medium,Dark,Low,Yes
Longitiudonal,Low,No,Low,Low,Light,Medium,Yes
Longitiudonal,Medium,No,Medium,Low,Dark,High,No
Longitiudonal,Low,No,Medium,Low,Dark,High,Yes
Round,Low,Yes,High,High,Transparent,High,Yes
Irregular,Medium,Yes,High,Low,Transparent,Medium,No
Longitiudonal,Medium,Yes,Low,High,Colorful,Medium,Yes
Longitiudonal,Low,No,Low,Medium,Dark,Medium,Yes
Flat,Medium,Yes,High,Low,Transparent,Low,Yes
Irregular,Medium,Yes,High,Medium,Dark,Low,No
Longitiudonal,High,No,Low,High,Colorful,Low,Yes
Round,Medium,No,Medium,Medium,Dark,Low,No
Longitiudonal,Medium,No,Medium,Medium,Transparent,High,No
Flat,Medium,Yes,Low,Low,Light,Medium,No
Flat,Medium,Yes,Medium,High,Light,Medium,No
Flat,Low,No,High,Low,Dark,High,No
Longitiudonal,Medium,Yes,High,High,Dark,Low,Yes
Flat,Low,Yes,Low,Low,Transparent,Low,No
Flat,Low,No,Medium,Low,Colorful,Low,No
Longitiudonal,Low,Yes,High,Medium,Transparent,Low,No
Longitiudonal,Low,No,Medium,High,Dark,Low,Yes
Irregular,Medium,No,Medium,Medium,Light,Low,Yes
Longitiudonal,High,No,High,High,Colorful,Low,No
Flat,Low,No,Low,Low,Dark,High,No
Flat,Low,Yes,Low,High,Dark,Low,Yes
Irregular,Medium,Yes,High,High,Dark,Low,No
Flat,High,No,High,Low,Dark,Medium,Yes
Longitiudonal,High,Yes,Low,Medium,Colorful,Low,Yes
1 Shape Flexibility DoesSmell Weight Size Color Softness DoesDin
2 Irregular High No High Medium Dark Low Yes
3 Longitiudonal Low No Low Low Light Medium Yes
4 Longitiudonal Medium No Medium Low Dark High No
5 Longitiudonal Low No Medium Low Dark High Yes
6 Round Low Yes High High Transparent High Yes
7 Irregular Medium Yes High Low Transparent Medium No
8 Longitiudonal Medium Yes Low High Colorful Medium Yes
9 Longitiudonal Low No Low Medium Dark Medium Yes
10 Flat Medium Yes High Low Transparent Low Yes
11 Irregular Medium Yes High Medium Dark Low No
12 Longitiudonal High No Low High Colorful Low Yes
13 Round Medium No Medium Medium Dark Low No
14 Longitiudonal Medium No Medium Medium Transparent High No
15 Flat Medium Yes Low Low Light Medium No
16 Flat Medium Yes Medium High Light Medium No
17 Flat Low No High Low Dark High No
18 Longitiudonal Medium Yes High High Dark Low Yes
19 Flat Low Yes Low Low Transparent Low No
20 Flat Low No Medium Low Colorful Low No
21 Longitiudonal Low Yes High Medium Transparent Low No
22 Longitiudonal Low No Medium High Dark Low Yes
23 Irregular Medium No Medium Medium Light Low Yes
24 Longitiudonal High No High High Colorful Low No
25 Flat Low No Low Low Dark High No
26 Flat Low Yes Low High Dark Low Yes
27 Irregular Medium Yes High High Dark Low No
28 Flat High No High Low Dark Medium Yes
29 Longitiudonal High Yes Low Medium Colorful Low Yes

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.4 KiB

Some files were not shown because too many files have changed in this diff Show More