A_star #25
62
bfs.py
62
bfs.py
@ -4,30 +4,44 @@ from city import City
|
||||
from gridCellType import GridCellType
|
||||
from agentActionType import AgentActionType
|
||||
from agentOrientation import AgentOrientation
|
||||
from queue import Queue
|
||||
from queue import Queue, PriorityQueue
|
||||
from turnCar import turn_left_orientation, turn_right_orientation
|
||||
|
||||
class Succ:
|
||||
state: AgentState
|
||||
action: AgentActionType
|
||||
##cost: int
|
||||
cost: int
|
||||
predicted_cost: int
|
||||
|
||||
def __init__(self, state: AgentState, action: AgentActionType) -> None:
|
||||
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
|
||||
self.state = state
|
||||
self.action = action
|
||||
##self.cost = cost
|
||||
self.cost = cost
|
||||
self.predicted_cost = cost
|
||||
|
||||
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> list[AgentActionType]:
|
||||
q: Queue[list[Succ]] = Queue()
|
||||
class SuccList:
|
||||
succ_list: list[Succ]
|
||||
|
||||
def __init__(self, succ_list: list[Succ]) -> None:
|
||||
self.succ_list = succ_list
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
|
||||
|
||||
def __gt__(self, other):
|
||||
return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
|
||||
|
||||
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> list[AgentActionType]:
|
||||
q: PriorityQueue[SuccList] = PriorityQueue()
|
||||
visited: list[AgentState] = []
|
||||
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN)]
|
||||
startStates: SuccList = SuccList([Succ(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))])
|
||||
q.put(startStates)
|
||||
while not q.empty():
|
||||
currently_checked = q.get()
|
||||
visited.append(currently_checked[-1].state)
|
||||
if is_state_success(currently_checked[-1].state, grid):
|
||||
visited.append(currently_checked.succ_list[-1].state)
|
||||
if is_state_success(currently_checked.succ_list[-1].state, grid):
|
||||
return extract_actions(currently_checked)
|
||||
successors = succ(currently_checked[-1].state)
|
||||
successors = succ(currently_checked.succ_list[-1], grid, city)
|
||||
for s in successors:
|
||||
already_visited = False
|
||||
for v in visited:
|
||||
@ -37,34 +51,38 @@ def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int],
|
||||
if already_visited:
|
||||
continue
|
||||
if is_state_valid(s.state, grid):
|
||||
new_list = currently_checked.copy()
|
||||
new_list = currently_checked.succ_list.copy()
|
||||
new_list.append(s)
|
||||
q.put(new_list)
|
||||
q.put(SuccList(new_list))
|
||||
return []
|
||||
|
||||
|
||||
|
||||
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
|
||||
def extract_actions(successors: SuccList) -> list[AgentActionType]:
|
||||
output: list[AgentActionType] = []
|
||||
for s in successors:
|
||||
for s in successors.succ_list:
|
||||
if s.action != AgentActionType.UNKNOWN:
|
||||
output.append(s.action)
|
||||
return output
|
||||
|
||||
def succ(state: AgentState) -> list[Succ]:
|
||||
def succ(succ: Succ, grid: Dict[Tuple[int, int], GridCellType], city: City) -> list[Succ]:
|
||||
result: list[Succ] = []
|
||||
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT))
|
||||
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT))
|
||||
state_succ = move_forward_succ(state)
|
||||
turn_left_cost = 1 + succ.cost
|
||||
result.append(Succ(AgentState(succ.state.position, turn_left_orientation(succ.state.orientation)), AgentActionType.TURN_LEFT, turn_left_cost, turn_left_cost + _heuristics(succ.state.position, city)))
|
||||
turn_right_cost = 1 + succ.cost
|
||||
result.append(Succ(AgentState(succ.state.position, turn_right_orientation(succ.state.orientation)), AgentActionType.TURN_RIGHT, turn_right_cost, turn_right_cost + _heuristics(succ.state.position, city)))
|
||||
state_succ = move_forward_succ(succ, city, grid)
|
||||
if state_succ != None:
|
||||
result.append(move_forward_succ(state))
|
||||
result.append(state_succ)
|
||||
return result
|
||||
|
||||
def move_forward_succ(state: AgentState) -> Succ:
|
||||
position = get_next_cell(state)
|
||||
def move_forward_succ(succ: Succ, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Succ:
|
||||
position = get_next_cell(succ.state)
|
||||
if position == None:
|
||||
return None
|
||||
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD)
|
||||
|
||||
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
|
||||
return Succ(AgentState(position, succ.state.orientation), AgentActionType.MOVE_FORWARD, cost, cost + _heuristics(position, city))
|
||||
|
||||
|
||||
def get_next_cell(state: AgentState) -> Tuple[int, int]:
|
||||
|
6
city.py
6
city.py
@ -11,12 +11,12 @@ class City:
|
||||
cans_dict: Dict[Tuple[int, int], GarbageCan] = {}
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.nodes = []
|
||||
self.cans = []
|
||||
self.streets = []
|
||||
self.bumps = []
|
||||
|
||||
def add_can(self, can: GarbageCan) -> None:
|
||||
self.nodes.append(can)
|
||||
self.cans.append(can)
|
||||
self.cans_dict[can.position] = can
|
||||
|
||||
def add_street(self, street: Street) -> None:
|
||||
@ -35,7 +35,7 @@ class City:
|
||||
street.render(game_context)
|
||||
|
||||
def _render_nodes(self, game_context: GameContext) -> None:
|
||||
for node in self.nodes:
|
||||
for node in self.cans:
|
||||
node.render(game_context)
|
||||
|
||||
def _render_bumps(self, game_context: GameContext) -> None:
|
||||
|
@ -13,7 +13,7 @@ from agentState import AgentState
|
||||
def collect_garbage(game_context: GameContext) -> None:
|
||||
while True:
|
||||
start_agent_state = AgentState(game_context.dust_car.position, game_context.dust_car.orientation)
|
||||
path = find_path_to_nearest_can(start_agent_state, game_context.grid)
|
||||
path = find_path_to_nearest_can(start_agent_state, game_context.grid, game_context.city)
|
||||
if path == None or len(path) == 0:
|
||||
break
|
||||
move_dust_car(path, game_context)
|
||||
|
Loading…
Reference in New Issue
Block a user