A_star #25
@ -7,4 +7,4 @@ class AgentState:
|
||||
|
||||
def __init__(self, position: Tuple[int, int], orientation: AgentOrientation) -> None:
|
||||
self.orientation = orientation
|
||||
self.position = position
|
||||
self.position = position
|
||||
|
158
bfs.py
158
bfs.py
@ -1,112 +1,155 @@
|
||||
from agentState import AgentState
|
||||
from typing import Dict, Tuple
|
||||
from typing import Dict, Tuple, List
|
||||
from city import City
|
||||
from gridCellType import GridCellType
|
||||
from agentActionType import AgentActionType
|
||||
from agentOrientation import AgentOrientation
|
||||
from queue import Queue
|
||||
from queue import Queue, PriorityQueue
|
||||
from turnCar import turn_left_orientation, turn_right_orientation
|
||||
|
||||
class Succ:
|
||||
state: AgentState
|
||||
action: AgentActionType
|
||||
##cost: int
|
||||
|
||||
def __init__(self, state: AgentState, action: AgentActionType) -> None:
|
||||
class Successor:
|
||||
|
||||
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
|
||||
self.state = state
|
||||
self.action = action
|
||||
##self.cost = cost
|
||||
self.cost = cost
|
||||
self.predicted_cost = cost
|
||||
|
||||
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> list[AgentActionType]:
|
||||
q: Queue[list[Succ]] = Queue()
|
||||
visited: list[AgentState] = []
|
||||
startStates: list[Succ] = [Succ(startState, AgentActionType.UNKNOWN)]
|
||||
q.put(startStates)
|
||||
while not q.empty():
|
||||
currently_checked = q.get()
|
||||
visited.append(currently_checked[-1].state)
|
||||
if is_state_success(currently_checked[-1].state, grid):
|
||||
return extract_actions(currently_checked)
|
||||
successors = succ(currently_checked[-1].state)
|
||||
|
||||
class SuccessorList:
|
||||
succ_list: list[Successor]
|
||||
|
||||
def __init__(self, succ_list: list[Successor]) -> None:
|
||||
self.succ_list = succ_list
|
||||
|
||||
def __gt__(self, other):
|
||||
return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
|
||||
|
||||
|
||||
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[
|
||||
AgentActionType]:
|
||||
visited: List[AgentState] = []
|
||||
queue: PriorityQueue[SuccessorList] = PriorityQueue()
|
||||
queue.put(SuccessorList([Successor(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))]))
|
||||
|
||||
while not queue.empty():
|
||||
current = queue.get()
|
||||
previous = current.succ_list[-1]
|
||||
visited.append(previous.state)
|
||||
|
||||
if is_state_success(previous.state, grid):
|
||||
return extract_actions(current)
|
||||
|
||||
successors = get_successors(previous, grid, city)
|
||||
for s in successors:
|
||||
already_visited = False
|
||||
for v in visited:
|
||||
if v.position[0] == s.state.position[0] and v.position[1] == s.state.position[1] and s.state.orientation == v.orientation:
|
||||
if v.position == s.state.position and v.orientation == s.state.orientation:
|
||||
already_visited = True
|
||||
break
|
||||
if already_visited:
|
||||
continue
|
||||
if is_state_valid(s.state, grid):
|
||||
new_list = currently_checked.copy()
|
||||
new_list = current.succ_list.copy()
|
||||
new_list.append(s)
|
||||
q.put(new_list)
|
||||
queue.put(SuccessorList(new_list))
|
||||
|
||||
return []
|
||||
|
||||
|
||||
|
||||
def extract_actions(successors: list[Succ]) -> list[AgentActionType]:
|
||||
|
||||
def extract_actions(successors: SuccessorList) -> list[AgentActionType]:
|
||||
output: list[AgentActionType] = []
|
||||
for s in successors:
|
||||
for s in successors.succ_list:
|
||||
if s.action != AgentActionType.UNKNOWN:
|
||||
output.append(s.action)
|
||||
return output
|
||||
|
||||
def succ(state: AgentState) -> list[Succ]:
|
||||
result: list[Succ] = []
|
||||
result.append(Succ(AgentState(state.position, turn_left_orientation(state.orientation)), AgentActionType.TURN_LEFT))
|
||||
result.append(Succ(AgentState(state.position, turn_right_orientation(state.orientation)), AgentActionType.TURN_RIGHT))
|
||||
state_succ = move_forward_succ(state)
|
||||
if state_succ != None:
|
||||
result.append(move_forward_succ(state))
|
||||
|
||||
def get_successors(succ: Successor, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[Successor]:
|
||||
result: List[Successor] = []
|
||||
|
||||
turn_left_cost = 1 + succ.cost
|
||||
turn_left_state = AgentState(succ.state.position, turn_left_orientation(succ.state.orientation))
|
||||
turn_left_heuristics = _heuristics(succ.state.position, city)
|
||||
result.append(
|
||||
Successor(turn_left_state, AgentActionType.TURN_LEFT, turn_left_cost, turn_left_cost + turn_left_heuristics))
|
||||
|
||||
turn_right_cost = 1 + succ.cost
|
||||
turn_right_state = AgentState(succ.state.position, turn_right_orientation(succ.state.orientation))
|
||||
turn_right_heuristics = _heuristics(succ.state.position, city)
|
||||
result.append(
|
||||
Successor(turn_right_state, AgentActionType.TURN_RIGHT, turn_right_cost,
|
||||
turn_right_cost + turn_right_heuristics))
|
||||
|
||||
state_succ = move_forward_succ(succ, city, grid)
|
||||
if state_succ is not None:
|
||||
result.append(state_succ)
|
||||
|
||||
return result
|
||||
|
||||
def move_forward_succ(state: AgentState) -> Succ:
|
||||
position = get_next_cell(state)
|
||||
if position == None:
|
||||
|
||||
def move_forward_succ(succ: Successor, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Successor:
|
||||
position = get_next_cell(succ.state)
|
||||
if position is None:
|
||||
return None
|
||||
return Succ(AgentState(position, state.orientation), AgentActionType.MOVE_FORWARD)
|
||||
|
||||
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
|
||||
predicted_cost = cost + _heuristics(position, city)
|
||||
new_state = AgentState(position, succ.state.orientation)
|
||||
return Successor(new_state, AgentActionType.MOVE_FORWARD, cost, predicted_cost)
|
||||
|
||||
|
||||
def get_next_cell(state: AgentState) -> Tuple[int, int]:
|
||||
if state.orientation == AgentOrientation.UP:
|
||||
if state.position[1] - 1 < 1:
|
||||
x, y = state.position
|
||||
orientation = state.orientation
|
||||
|
||||
if orientation == AgentOrientation.UP:
|
||||
if y - 1 < 1:
|
||||
return None
|
||||
return (state.position[0], state.position[1] - 1)
|
||||
if state.orientation == AgentOrientation.DOWN:
|
||||
if state.position[1] + 1 > 27:
|
||||
return x, y - 1
|
||||
elif orientation == AgentOrientation.DOWN:
|
||||
if y + 1 > 27:
|
||||
return None
|
||||
return (state.position[0], state.position[1] + 1)
|
||||
if state.orientation == AgentOrientation.LEFT:
|
||||
if state.position[0] - 1 < 1:
|
||||
return x, y + 1
|
||||
elif orientation == AgentOrientation.LEFT:
|
||||
if x - 1 < 1:
|
||||
return None
|
||||
return (state.position[0] - 1, state.position[1])
|
||||
if state.position[0] + 1 > 27:
|
||||
return x - 1, y
|
||||
elif x + 1 > 27:
|
||||
return None
|
||||
return (state.position[0] + 1, state.position[1])
|
||||
else:
|
||||
return x + 1, y
|
||||
|
||||
|
||||
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
|
||||
next_cell = get_next_cell(state)
|
||||
try:
|
||||
return grid[next_cell] == GridCellType.GARBAGE_CAN
|
||||
except:
|
||||
except KeyError:
|
||||
return False
|
||||
|
||||
|
||||
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
|
||||
if action == AgentActionType.TURN_LEFT or action == AgentActionType.TURN_RIGHT:
|
||||
if action in [AgentActionType.TURN_LEFT, AgentActionType.TURN_RIGHT]:
|
||||
return 1
|
||||
if cell_type == GridCellType.SPEED_BUMP:
|
||||
if action == AgentActionType.MOVE_FORWARD:
|
||||
return 10
|
||||
if cell_type == GridCellType.SPEED_BUMP and action == AgentActionType.MOVE_FORWARD:
|
||||
return 10
|
||||
if action == AgentActionType.MOVE_FORWARD:
|
||||
return 3
|
||||
|
||||
|
||||
def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
|
||||
try:
|
||||
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[state.position] == GridCellType.STREET_VERTICAL or grid[state.position] == GridCellType.SPEED_BUMP
|
||||
except:
|
||||
try:
|
||||
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[
|
||||
state.position] == GridCellType.STREET_VERTICAL or grid[state.position] == GridCellType.SPEED_BUMP
|
||||
except KeyError:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
def _heuristics(position: Tuple[int, int], city: City):
|
||||
min_distance: int = 300
|
||||
found_nonvisited: bool = False
|
||||
@ -120,4 +163,3 @@ def _heuristics(position: Tuple[int, int], city: City):
|
||||
if found_nonvisited:
|
||||
return min_distance
|
||||
return -1
|
||||
|
19
city.py
19
city.py
@ -2,8 +2,9 @@ from typing import List, Dict, Tuple
|
||||
from garbageCan import GarbageCan
|
||||
from speedBump import SpeedBump
|
||||
from street import Street
|
||||
from gameContext import GameContext
|
||||
|
||||
from gameContext import GameContext
|
||||
|
||||
|
||||
class City:
|
||||
cans: List[GarbageCan]
|
||||
bumps: List[SpeedBump]
|
||||
@ -11,17 +12,17 @@ class City:
|
||||
cans_dict: Dict[Tuple[int, int], GarbageCan] = {}
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.nodes = []
|
||||
self.cans = []
|
||||
self.streets = []
|
||||
self.bumps = []
|
||||
|
||||
def add_can(self, can: GarbageCan) -> None:
|
||||
self.nodes.append(can)
|
||||
self.cans.append(can)
|
||||
self.cans_dict[can.position] = can
|
||||
|
||||
|
||||
def add_street(self, street: Street) -> None:
|
||||
self.streets.append(street)
|
||||
|
||||
|
||||
def add_bump(self, bump: SpeedBump) -> None:
|
||||
self.streets.append(bump)
|
||||
|
||||
@ -33,11 +34,11 @@ class City:
|
||||
def _render_streets(self, game_context: GameContext) -> None:
|
||||
for street in self.streets:
|
||||
street.render(game_context)
|
||||
|
||||
|
||||
def _render_nodes(self, game_context: GameContext) -> None:
|
||||
for node in self.nodes:
|
||||
for node in self.cans:
|
||||
node.render(game_context)
|
||||
|
||||
|
||||
def _render_bumps(self, game_context: GameContext) -> None:
|
||||
for bump in self.bumps:
|
||||
bump.render(game_context)
|
@ -10,10 +10,11 @@ import pygame
|
||||
from bfs import find_path_to_nearest_can
|
||||
from agentState import AgentState
|
||||
|
||||
|
||||
def collect_garbage(game_context: GameContext) -> None:
|
||||
while True:
|
||||
start_agent_state = AgentState(game_context.dust_car.position, game_context.dust_car.orientation)
|
||||
path = find_path_to_nearest_can(start_agent_state, game_context.grid)
|
||||
path = find_path_to_nearest_can(start_agent_state, game_context.grid, game_context.city)
|
||||
if path == None or len(path) == 0:
|
||||
break
|
||||
move_dust_car(path, game_context)
|
||||
@ -22,6 +23,7 @@ def collect_garbage(game_context: GameContext) -> None:
|
||||
game_context.city.cans_dict[next_position].is_visited = True
|
||||
pass
|
||||
|
||||
|
||||
def move_dust_car(actions: list[AgentActionType], game_context: GameContext) -> None:
|
||||
for action in actions:
|
||||
street_position = game_context.dust_car.position
|
||||
@ -44,7 +46,6 @@ def move_dust_car(actions: list[AgentActionType], game_context: GameContext) ->
|
||||
pygame.display.update()
|
||||
time.sleep(0.15)
|
||||
|
||||
|
||||
|
||||
def calculate_next_position(car: GarbageTruck) -> Tuple[int, int]:
|
||||
if car.orientation == AgentOrientation.UP:
|
||||
|
Loading…
Reference in New Issue
Block a user