sztuczna_inteligencja_2023_.../bfs.py
2023-05-25 18:18:11 +02:00

166 lines
5.6 KiB
Python

from agentState import AgentState
from typing import Dict, Tuple, List
from city import City
from gridCellType import GridCellType
from agentActionType import AgentActionType
from agentOrientation import AgentOrientation
from queue import Queue, PriorityQueue
from turnCar import turn_left_orientation, turn_right_orientation
class Successor:
def __init__(self, state: AgentState, action: AgentActionType, cost: int, predicted_cost: int) -> None:
self.state = state
self.action = action
self.cost = cost
self.predicted_cost = cost
class SuccessorList:
succ_list: list[Successor]
def __init__(self, succ_list: list[Successor]) -> None:
self.succ_list = succ_list
def __gt__(self, other):
return self.succ_list[-1].predicted_cost > other.succ_list[-1].predicted_cost
def __lt__(self, other):
return self.succ_list[-1].predicted_cost < other.succ_list[-1].predicted_cost
def find_path_to_nearest_can(startState: AgentState, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[
AgentActionType]:
visited: List[AgentState] = []
queue: PriorityQueue[SuccessorList] = PriorityQueue()
queue.put(SuccessorList([Successor(startState, AgentActionType.UNKNOWN, 0, _heuristics(startState.position, city))]))
while not queue.empty():
current = queue.get()
previous = current.succ_list[-1]
visited.append(previous.state)
if is_state_success(previous.state, grid):
return extract_actions(current)
successors = get_successors(previous, grid, city)
for s in successors:
already_visited = False
for v in visited:
if v.position == s.state.position and v.orientation == s.state.orientation:
already_visited = True
break
if already_visited:
continue
if is_state_valid(s.state, grid):
new_list = current.succ_list.copy()
new_list.append(s)
queue.put(SuccessorList(new_list))
return []
def extract_actions(successors: SuccessorList) -> list[AgentActionType]:
output: list[AgentActionType] = []
for s in successors.succ_list:
if s.action != AgentActionType.UNKNOWN:
output.append(s.action)
return output
def get_successors(succ: Successor, grid: Dict[Tuple[int, int], GridCellType], city: City) -> List[Successor]:
result: List[Successor] = []
turn_left_cost = 1 + succ.cost
turn_left_state = AgentState(succ.state.position, turn_left_orientation(succ.state.orientation))
turn_left_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_left_state, AgentActionType.TURN_LEFT, turn_left_cost, turn_left_cost + turn_left_heuristics))
turn_right_cost = 1 + succ.cost
turn_right_state = AgentState(succ.state.position, turn_right_orientation(succ.state.orientation))
turn_right_heuristics = _heuristics(succ.state.position, city)
result.append(
Successor(turn_right_state, AgentActionType.TURN_RIGHT, turn_right_cost,
turn_right_cost + turn_right_heuristics))
state_succ = move_forward_succ(succ, city, grid)
if state_succ is not None:
result.append(state_succ)
return result
def move_forward_succ(succ: Successor, city: City, grid: Dict[Tuple[int, int], GridCellType]) -> Successor:
position = get_next_cell(succ.state)
if position is None:
return None
cost = get_cost_for_action(AgentActionType.MOVE_FORWARD, grid[position]) + succ.cost
predicted_cost = cost + _heuristics(position, city)
new_state = AgentState(position, succ.state.orientation)
return Successor(new_state, AgentActionType.MOVE_FORWARD, cost, predicted_cost)
def get_next_cell(state: AgentState) -> Tuple[int, int]:
x, y = state.position
orientation = state.orientation
if orientation == AgentOrientation.UP:
if y - 1 < 1:
return None
return x, y - 1
elif orientation == AgentOrientation.DOWN:
if y + 1 > 27:
return None
return x, y + 1
elif orientation == AgentOrientation.LEFT:
if x - 1 < 1:
return None
return x - 1, y
elif x + 1 > 27:
return None
else:
return x + 1, y
def is_state_success(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
next_cell = get_next_cell(state)
try:
return grid[next_cell] == GridCellType.GARBAGE_CAN
except KeyError:
return False
def get_cost_for_action(action: AgentActionType, cell_type: GridCellType) -> int:
if action in [AgentActionType.TURN_LEFT, AgentActionType.TURN_RIGHT]:
return 1
if cell_type == GridCellType.SPEED_BUMP and action == AgentActionType.MOVE_FORWARD:
return 10
if action == AgentActionType.MOVE_FORWARD:
return 3
def is_state_valid(state: AgentState, grid: Dict[Tuple[int, int], GridCellType]) -> bool:
try:
return grid[state.position] == GridCellType.STREET_HORIZONTAL or grid[
state.position] == GridCellType.STREET_VERTICAL or grid[state.position] == GridCellType.SPEED_BUMP
except KeyError:
return False
def _heuristics(position: Tuple[int, int], city: City):
min_distance: int = 300
found_nonvisited: bool = False
for can in city.cans:
if can.is_visited:
continue
found_nonvisited = True
distance = 3 * (abs(position[0] - can.position[0]) + abs(position[1] - can.position[1]))
if distance < min_distance:
min_distance = distance
if found_nonvisited:
return min_distance
return -1