90 lines
2.3 KiB
Python
90 lines
2.3 KiB
Python
|
# Ten plik był odpalany na remote serwerze jupyter notebook, stąd dziwne komentarze i cała baza danych w zipie
|
||
|
# Skuteczność sieci to mniej więcej 80% na zbiorze walidacyjnym, ale jest przeuczona, bo nie augmentowaliśmy danych
|
||
|
|
||
|
|
||
|
import os
|
||
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
||
|
from tensorflow.keras import Sequential
|
||
|
from tensorflow.keras.callbacks import EarlyStopping
|
||
|
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Input
|
||
|
from tensorflow.keras.callbacks import ModelCheckpoint
|
||
|
|
||
|
save_best = ModelCheckpoint('./best_model_newD.h5', monitor='val_loss', save_best_only=True)
|
||
|
es = EarlyStopping(monitor="val_loss", mode="min", patience=5)
|
||
|
|
||
|
EPOCHS = 100
|
||
|
|
||
|
|
||
|
# In[2]:
|
||
|
|
||
|
|
||
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||
|
|
||
|
root_path = "./Database/"
|
||
|
|
||
|
gen = ImageDataGenerator(
|
||
|
rescale=1./255,
|
||
|
validation_split=0.2
|
||
|
)
|
||
|
|
||
|
# Load Data
|
||
|
train_dataset = gen.flow_from_directory(
|
||
|
root_path,
|
||
|
class_mode="categorical",
|
||
|
classes=os.listdir(root_path),
|
||
|
shuffle=True,
|
||
|
batch_size=32,
|
||
|
target_size=(128,128),
|
||
|
subset="training",
|
||
|
color_mode='grayscale'
|
||
|
)
|
||
|
|
||
|
validation_dataset = gen.flow_from_directory(
|
||
|
root_path,
|
||
|
class_mode="categorical",
|
||
|
classes=os.listdir(root_path),
|
||
|
shuffle=True,
|
||
|
batch_size=32,
|
||
|
target_size=(128,128),
|
||
|
subset="validation",
|
||
|
color_mode='grayscale'
|
||
|
)
|
||
|
|
||
|
|
||
|
# In[4]:
|
||
|
|
||
|
model = Sequential()
|
||
|
model.add(Input(shape=(128,128)))
|
||
|
model.add(Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', input_shape=(128, 128, 1)))
|
||
|
model.add(MaxPooling2D((2, 2)))
|
||
|
model.add(Conv2D(filters = 32, kernel_size = (3, 3), activation='relu', input_shape=(64, 64, 1)))
|
||
|
model.add(MaxPooling2D((2, 2)))
|
||
|
model.add(Conv2D(filters = 16, kernel_size = (3, 3), activation='relu', input_shape=(32, 32, 1)))
|
||
|
model.add(MaxPooling2D((2, 2)))
|
||
|
model.add(Flatten())
|
||
|
model.add(Dense(128*128, activation='relu'))
|
||
|
model.add(Dense(1000, activation='relu'))
|
||
|
# model.add(Dropout(0.2))
|
||
|
model.add(Dense(25, activation='relu'))
|
||
|
# model.add(Dropout(0.2))
|
||
|
model.add(Dense(5, activation='softmax'))
|
||
|
|
||
|
model.compile(optimizer='adam',
|
||
|
loss='categorical_crossentropy',
|
||
|
metrics=['accuracy'])
|
||
|
model.summary()
|
||
|
|
||
|
|
||
|
# In[5]:
|
||
|
|
||
|
|
||
|
history = model.fit(train_dataset, epochs = EPOCHS, validation_data=(validation_dataset), callbacks = [es, save_best])
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
|
||
|
|