parent
b1880d61cb
commit
56ca4bc891
1
.gitignore
vendored
1
.gitignore
vendored
@ -16,6 +16,7 @@ lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
Network/Results
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
|
@ -4,27 +4,20 @@ from keras.models import Sequential
|
||||
from keras.optimizers import Adam
|
||||
from keras.utils import to_categorical
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
import os
|
||||
import PIL
|
||||
import PIL.Image
|
||||
import numpy
|
||||
|
||||
# Normalizes the pixel values of an image to the range [0, 1].
|
||||
|
||||
def normalize(image, label):
|
||||
return image / 255, label
|
||||
|
||||
# Set the paths to the folders containing the training data
|
||||
train_data_dir = "Training/"
|
||||
|
||||
|
||||
# Set the number of classes and batch size
|
||||
# Set the paths to the folder containing the training data
|
||||
train_data_dir = "Network/Training/"
|
||||
# Set the number of classes and batch size
|
||||
num_classes = 3
|
||||
batch_size = 32
|
||||
|
||||
# Set the image size and input shape
|
||||
# Set the image size and input shape
|
||||
img_width, img_height = 100, 100
|
||||
input_shape = (img_width, img_height, 1)
|
||||
|
||||
# Load the training and validation data
|
||||
train_ds = tf.keras.utils.image_dataset_from_directory(
|
||||
train_data_dir,
|
||||
validation_split=0.2,
|
||||
@ -42,14 +35,13 @@ val_ds = tf.keras.utils.image_dataset_from_directory(
|
||||
seed=123,
|
||||
image_size=(img_height, img_width),
|
||||
batch_size=batch_size)
|
||||
|
||||
# Get the class names
|
||||
class_names = train_ds.class_names
|
||||
print(class_names)
|
||||
|
||||
# Normalize the training and validation data
|
||||
train_ds = train_ds.map(normalize)
|
||||
val_ds = val_ds.map(normalize)
|
||||
|
||||
# Define the model architecture
|
||||
# Define the model architecture
|
||||
model = tf.keras.Sequential([
|
||||
layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(img_height, img_width, 1)),
|
||||
layers.MaxPooling2D(),
|
||||
@ -61,20 +53,16 @@ model = tf.keras.Sequential([
|
||||
layers.Dense(128, activation='relu'),
|
||||
layers.Dense(num_classes, activation='softmax')
|
||||
])
|
||||
|
||||
# Compile the model
|
||||
# Compile the model
|
||||
model.compile(optimizer='adam',
|
||||
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
||||
metrics=['accuracy'])
|
||||
|
||||
# Print the model summary
|
||||
model.summary()
|
||||
|
||||
|
||||
# Train the model
|
||||
epochs=10
|
||||
# Train the model
|
||||
model.fit(train_ds,
|
||||
validation_data=val_ds,
|
||||
epochs=epochs)
|
||||
|
||||
# Save the trained model
|
||||
model.save('trained_model.h5')
|
||||
# Save the trained model
|
||||
model.save('Network/trained_model.h5')
|
@ -4,13 +4,13 @@ import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
# Load the trained model
|
||||
model = keras.models.load_model('trained_model.h5')
|
||||
model = keras.models.load_model('Network/trained_model.h5')
|
||||
|
||||
# Load the class names
|
||||
class_names = ['Table', 'Done','Order']
|
||||
|
||||
# Path to the folder containing test images
|
||||
test_images_folder = 'Testing/'
|
||||
test_images_folder = 'Network/Testing/'
|
||||
|
||||
# Iterate over the test images
|
||||
i = 0
|
||||
@ -27,7 +27,6 @@ for folder_name in os.listdir(test_images_folder):
|
||||
true_class = 'Done'
|
||||
elif folder_name == 'People':
|
||||
true_class = 'Order'
|
||||
true_class = folder_name
|
||||
|
||||
# Iterate over the files in the subfolder
|
||||
for filename in os.listdir(folder_path):
|
||||
@ -35,8 +34,8 @@ for folder_name in os.listdir(test_images_folder):
|
||||
i+=1
|
||||
# Load and preprocess the test image
|
||||
image_path = os.path.join(folder_path, filename)
|
||||
test_image = keras.preprocessingimage.load_img(image_path, target_size=(100, 100))
|
||||
test_image = keras.preprocessingimage.img_to_array(test_image)
|
||||
test_image = keras.preprocessing.image.load_img(image_path, target_size=(100, 100))
|
||||
test_image = keras.preprocessing.image.img_to_array(test_image)
|
||||
test_image = np.expand_dims(test_image, axis=0)
|
||||
test_image = test_image / 255.0 # Normalize the image
|
||||
|
||||
@ -48,7 +47,7 @@ for folder_name in os.listdir(test_images_folder):
|
||||
predicted_class_index = np.argmax(predictions[0])
|
||||
predicted_class = class_names[predicted_class_index]
|
||||
|
||||
direct = 'Results/'
|
||||
direct = 'Network/Results/'
|
||||
filename = str(i) + predicted_class + '.jpeg'
|
||||
test_image = np.reshape(test_image, (100, 100, 3))
|
||||
tf.keras.preprocessing.image.save_img(direct+filename, test_image)
|
||||
|
@ -4,13 +4,13 @@ import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
# Load the trained model
|
||||
model = keras.models.load_model('trained_model.h5')
|
||||
model = keras.models.load_model('Network/trained_model.h5')
|
||||
|
||||
# Load the class names
|
||||
class_names = ['Table', 'Done','Order']
|
||||
|
||||
# Load and preprocess the validation dataset
|
||||
data_dir = "Training/"
|
||||
data_dir = "Network/Training/"
|
||||
image_size = (100, 100)
|
||||
batch_size = 32
|
||||
|
||||
@ -45,9 +45,9 @@ for i in range(60):
|
||||
|
||||
true_class = class_names[test_label]
|
||||
|
||||
direct = 'Results/'
|
||||
direct = 'Network/Results/'
|
||||
filename = predicted_class + str(i) + '.jpeg'
|
||||
tf.keras.preprocessing.image.save_img(direct+filename, test_image)
|
||||
tf.keras.preprocessing.image.save_img(direct+filename, val_images[i])
|
||||
if predicted_class != true_class:
|
||||
errorcount += 1
|
||||
print('Image', i+1)
|
||||
|
Loading…
Reference in New Issue
Block a user