Read tree from file
This commit is contained in:
parent
3f65be482c
commit
bdea00c5b2
BIN
DecisionTree/wyuczone_drzewo.pkl
Normal file
BIN
DecisionTree/wyuczone_drzewo.pkl
Normal file
Binary file not shown.
@ -1,4 +1,5 @@
|
||||
import graphviz
|
||||
import joblib
|
||||
import pandas as pd
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.tree import export_graphviz
|
||||
@ -23,36 +24,26 @@ def make_tree():
|
||||
x = pd.read_csv('DecisionTree/training_data.txt', delimiter=';',
|
||||
names=['wielkosc', 'waga,', 'priorytet', 'ksztalt', 'kruchosc', 'dolna', 'gorna', 'g > d'])
|
||||
y = pd.read_csv('DecisionTree/decisions.txt', names=['polka'])
|
||||
# X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1) # 70% treningowe and 30% testowe
|
||||
|
||||
|
||||
# Tworzenie instancji klasyfikatora ID3
|
||||
clf = DecisionTreeClassifier(criterion='entropy')
|
||||
|
||||
# Trenowanie klasyfikatora
|
||||
clf.fit(x.values, y.values)
|
||||
# clf.fit(X_train, y_train)
|
||||
|
||||
# Zapis drzewa do pliku
|
||||
joblib.dump(clf, 'DecisionTree/wyuczone_drzewo.pkl')
|
||||
|
||||
return clf
|
||||
|
||||
# # Predykcja na nowych danych
|
||||
# new_data = [[2, 2, 1, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]
|
||||
# predictions = clf.predict(new_data)
|
||||
# # y_pred = clf.predict(X_test)
|
||||
|
||||
def stworz_plik_drzewa_w_pdf(clf, feature_names, class_names):
|
||||
# Wygenerowanie pliku .dot reprezentującego drzewo
|
||||
dot_data = export_graphviz(clf, out_file=None, feature_names=feature_names, class_names=class_names, filled=True,
|
||||
rounded=True)
|
||||
# Tworzenie obiektu graphviz z pliku .dot
|
||||
graph = graphviz.Source(dot_data)
|
||||
|
||||
# print(predictions)
|
||||
# # print("Accuracy:", clf.score(new_data, predictions))
|
||||
# # print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
|
||||
|
||||
|
||||
# Wygenerowanie pliku .dot reprezentującego drzewo
|
||||
# dot_data = export_graphviz(clf, out_file=None, feature_names=list(x.columns), class_names=['0', '1'], filled=True,
|
||||
# rounded=True)
|
||||
|
||||
# # Tworzenie obiektu graphviz z pliku .dot
|
||||
# graph = graphviz.Source(dot_data)
|
||||
|
||||
# # Wyświetlanie drzewa
|
||||
# graph.view()
|
||||
|
||||
# z = pd.concat([x, y], axis=1)
|
||||
# z.to_csv('dane.csv', index=False)
|
||||
# Wyświetlanie drzewa
|
||||
graph.view()
|
||||
|
10
main.py
10
main.py
@ -1,13 +1,13 @@
|
||||
import sys
|
||||
|
||||
import joblib
|
||||
import pygame
|
||||
from paczka import Paczka
|
||||
from wozek import Wozek
|
||||
import wyszukiwanie
|
||||
import ekran
|
||||
from grid import GridCellType, SearchGrid
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
import pandas as pd
|
||||
import drzewo_decyzyjne
|
||||
|
||||
|
||||
from plansza import a_pix, b_pix
|
||||
pygame.init()
|
||||
@ -19,7 +19,9 @@ def main():
|
||||
p2 = Paczka('maly', 1, 'ogród', False, True, False, any, any, any, any, any)
|
||||
ekran.dodaj_paczki_na_rampe(p1, p2)
|
||||
grid_points = SearchGrid()
|
||||
drzewo = drzewo_decyzyjne.make_tree()
|
||||
|
||||
# Odczyt drzewa z pliku
|
||||
drzewo = joblib.load('DecisionTree/wyuczone_drzewo.pkl')
|
||||
|
||||
while True:
|
||||
for event in pygame.event.get():
|
||||
|
Loading…
Reference in New Issue
Block a user