Compare commits
No commits in common. "master" and "deciosion_tree_table" have entirely different histories.
master
...
deciosion_
160
.gitignore
vendored
@ -1,160 +0,0 @@
|
|||||||
# Byte-compiled / optimized / DLL files
|
|
||||||
__pycache__/
|
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
wheels/
|
|
||||||
share/python-wheels/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
MANIFEST
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.nox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*.cover
|
|
||||||
*.py,cover
|
|
||||||
.hypothesis/
|
|
||||||
.pytest_cache/
|
|
||||||
cover/
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
local_settings.py
|
|
||||||
db.sqlite3
|
|
||||||
db.sqlite3-journal
|
|
||||||
|
|
||||||
# Flask stuff:
|
|
||||||
instance/
|
|
||||||
.webassets-cache
|
|
||||||
|
|
||||||
# Scrapy stuff:
|
|
||||||
.scrapy
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
.pybuilder/
|
|
||||||
target/
|
|
||||||
|
|
||||||
# Jupyter Notebook
|
|
||||||
.ipynb_checkpoints
|
|
||||||
|
|
||||||
# IPython
|
|
||||||
profile_default/
|
|
||||||
ipython_config.py
|
|
||||||
|
|
||||||
# pyenv
|
|
||||||
# For a library or package, you might want to ignore these files since the code is
|
|
||||||
# intended to run in multiple environments; otherwise, check them in:
|
|
||||||
# .python-version
|
|
||||||
|
|
||||||
# pipenv
|
|
||||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
||||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
||||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
||||||
# install all needed dependencies.
|
|
||||||
#Pipfile.lock
|
|
||||||
|
|
||||||
# poetry
|
|
||||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
||||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
||||||
# commonly ignored for libraries.
|
|
||||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
||||||
#poetry.lock
|
|
||||||
|
|
||||||
# pdm
|
|
||||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
||||||
#pdm.lock
|
|
||||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
|
||||||
# in version control.
|
|
||||||
# https://pdm.fming.dev/#use-with-ide
|
|
||||||
.pdm.toml
|
|
||||||
|
|
||||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
||||||
__pypackages__/
|
|
||||||
|
|
||||||
# Celery stuff
|
|
||||||
celerybeat-schedule
|
|
||||||
celerybeat.pid
|
|
||||||
|
|
||||||
# SageMath parsed files
|
|
||||||
*.sage.py
|
|
||||||
|
|
||||||
# Environments
|
|
||||||
.env
|
|
||||||
.venv
|
|
||||||
env/
|
|
||||||
venv/
|
|
||||||
ENV/
|
|
||||||
env.bak/
|
|
||||||
venv.bak/
|
|
||||||
|
|
||||||
# Spyder project settings
|
|
||||||
.spyderproject
|
|
||||||
.spyproject
|
|
||||||
|
|
||||||
# Rope project settings
|
|
||||||
.ropeproject
|
|
||||||
|
|
||||||
# mkdocs documentation
|
|
||||||
/site
|
|
||||||
|
|
||||||
# mypy
|
|
||||||
.mypy_cache/
|
|
||||||
.dmypy.json
|
|
||||||
dmypy.json
|
|
||||||
|
|
||||||
# Pyre type checker
|
|
||||||
.pyre/
|
|
||||||
|
|
||||||
# pytype static type analyzer
|
|
||||||
.pytype/
|
|
||||||
|
|
||||||
# Cython debug symbols
|
|
||||||
cython_debug/
|
|
||||||
|
|
||||||
# PyCharm
|
|
||||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
||||||
#.idea/
|
|
5
.vscode/settings.json
vendored
@ -1,5 +0,0 @@
|
|||||||
{
|
|
||||||
"python.analysis.extraPaths": [
|
|
||||||
"./DecisionTree"
|
|
||||||
]
|
|
||||||
}
|
|
200
DecisionTree/200permutations.txt
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
10010010
|
||||||
|
00101101
|
||||||
|
20110001
|
||||||
|
22101110
|
||||||
|
10010001
|
||||||
|
21001100
|
||||||
|
10001001
|
||||||
|
11010001
|
||||||
|
00101110
|
||||||
|
02000110
|
||||||
|
00100101
|
||||||
|
00000110
|
||||||
|
02101100
|
||||||
|
20001000
|
||||||
|
21010111
|
||||||
|
01101110
|
||||||
|
02011101
|
||||||
|
12101100
|
||||||
|
00111101
|
||||||
|
00011001
|
||||||
|
11111010
|
||||||
|
12100111
|
||||||
|
22110111
|
||||||
|
12101101
|
||||||
|
01000101
|
||||||
|
11000101
|
||||||
|
01000111
|
||||||
|
21010101
|
||||||
|
01101100
|
||||||
|
21010110
|
||||||
|
12100011
|
||||||
|
12010111
|
||||||
|
02010101
|
||||||
|
21101111
|
||||||
|
02010001
|
||||||
|
01100110
|
||||||
|
22100011
|
||||||
|
10000010
|
||||||
|
00110100
|
||||||
|
22011100
|
||||||
|
12110001
|
||||||
|
12010011
|
||||||
|
01011110
|
||||||
|
01001100
|
||||||
|
01011000
|
||||||
|
11101101
|
||||||
|
11110110
|
||||||
|
21110110
|
||||||
|
22001100
|
||||||
|
10010101
|
||||||
|
21111010
|
||||||
|
00001100
|
||||||
|
21110101
|
||||||
|
12111011
|
||||||
|
02001111
|
||||||
|
21011000
|
||||||
|
02111011
|
||||||
|
12011110
|
||||||
|
02000101
|
||||||
|
12000100
|
||||||
|
20010111
|
||||||
|
21100011
|
||||||
|
01110100
|
||||||
|
21011100
|
||||||
|
02010000
|
||||||
|
21001001
|
||||||
|
11001100
|
||||||
|
20010011
|
||||||
|
20111011
|
||||||
|
22011000
|
||||||
|
01011101
|
||||||
|
10111000
|
||||||
|
20011111
|
||||||
|
10000001
|
||||||
|
21100001
|
||||||
|
00001101
|
||||||
|
01010001
|
||||||
|
22010000
|
||||||
|
02111101
|
||||||
|
22100110
|
||||||
|
12001110
|
||||||
|
01110001
|
||||||
|
11101000
|
||||||
|
20110011
|
||||||
|
20101010
|
||||||
|
22000110
|
||||||
|
11011011
|
||||||
|
20000011
|
||||||
|
12001101
|
||||||
|
12110000
|
||||||
|
00111110
|
||||||
|
02110100
|
||||||
|
21100010
|
||||||
|
10011000
|
||||||
|
22011101
|
||||||
|
20011100
|
||||||
|
02100000
|
||||||
|
12111001
|
||||||
|
00000111
|
||||||
|
22111011
|
||||||
|
01001010
|
||||||
|
21101100
|
||||||
|
01111111
|
||||||
|
12111010
|
||||||
|
20111110
|
||||||
|
10110010
|
||||||
|
02001001
|
||||||
|
22000100
|
||||||
|
02001100
|
||||||
|
01000011
|
||||||
|
10000101
|
||||||
|
21000010
|
||||||
|
01100100
|
||||||
|
10101010
|
||||||
|
20001100
|
||||||
|
00000000
|
||||||
|
00101000
|
||||||
|
10100000
|
||||||
|
02100001
|
||||||
|
20011101
|
||||||
|
02011110
|
||||||
|
02111111
|
||||||
|
12010110
|
||||||
|
02100100
|
||||||
|
20111111
|
||||||
|
00011111
|
||||||
|
12011000
|
||||||
|
12011001
|
||||||
|
22010010
|
||||||
|
22000010
|
||||||
|
00010010
|
||||||
|
10101000
|
||||||
|
02000000
|
||||||
|
20101111
|
||||||
|
02100011
|
||||||
|
02101111
|
||||||
|
22101010
|
||||||
|
11111111
|
||||||
|
01101000
|
||||||
|
21100111
|
||||||
|
00101111
|
||||||
|
01101010
|
||||||
|
20010010
|
||||||
|
11011110
|
||||||
|
20011110
|
||||||
|
00100110
|
||||||
|
10101111
|
||||||
|
01000001
|
||||||
|
02011001
|
||||||
|
21101011
|
||||||
|
11111011
|
||||||
|
10110011
|
||||||
|
10011001
|
||||||
|
21110010
|
||||||
|
10000000
|
||||||
|
00011110
|
||||||
|
10110001
|
||||||
|
21111011
|
||||||
|
12010101
|
||||||
|
11000110
|
||||||
|
22101101
|
||||||
|
00000010
|
||||||
|
02000111
|
||||||
|
21000011
|
||||||
|
00011100
|
||||||
|
10100110
|
||||||
|
20001111
|
||||||
|
12100001
|
||||||
|
22000101
|
||||||
|
01100010
|
||||||
|
02001010
|
||||||
|
11001111
|
||||||
|
00010011
|
||||||
|
01100111
|
||||||
|
22011010
|
||||||
|
10101011
|
||||||
|
11010011
|
||||||
|
20110010
|
||||||
|
20100010
|
||||||
|
11110111
|
||||||
|
21101000
|
||||||
|
02011000
|
||||||
|
12110100
|
||||||
|
21111101
|
||||||
|
02010111
|
||||||
|
02101001
|
||||||
|
01100011
|
||||||
|
10011011
|
||||||
|
22110000
|
||||||
|
01100000
|
||||||
|
20110100
|
||||||
|
01100001
|
||||||
|
00111010
|
||||||
|
02000010
|
||||||
|
20010110
|
||||||
|
00101011
|
||||||
|
22001011
|
||||||
|
22010001
|
||||||
|
22010101
|
||||||
|
12100101
|
@ -1,197 +0,0 @@
|
|||||||
digraph Tree {
|
|
||||||
node [shape=box, style="filled, rounded", color="black", fontname="helvetica"] ;
|
|
||||||
edge [fontname="helvetica"] ;
|
|
||||||
0 [label="g > d <= 0.5\nentropy = 0.997\nsamples = 200\nvalue = [94, 106]\nclass = 1", fillcolor="#e9f4fc"] ;
|
|
||||||
1 [label="waga, <= 0.5\nentropy = 0.803\nsamples = 98\nvalue = [74, 24]\nclass = 0", fillcolor="#edaa79"] ;
|
|
||||||
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
|
|
||||||
2 [label="wielkosc <= 1.5\nentropy = 0.998\nsamples = 34\nvalue = [16, 18]\nclass = 1", fillcolor="#e9f4fc"] ;
|
|
||||||
1 -> 2 ;
|
|
||||||
3 [label="priorytet <= 0.5\nentropy = 0.887\nsamples = 23\nvalue = [7, 16]\nclass = 1", fillcolor="#90c8f0"] ;
|
|
||||||
2 -> 3 ;
|
|
||||||
4 [label="kruchosc <= 0.5\nentropy = 0.439\nsamples = 11\nvalue = [1, 10]\nclass = 1", fillcolor="#4da7e8"] ;
|
|
||||||
3 -> 4 ;
|
|
||||||
5 [label="entropy = 0.0\nsamples = 7\nvalue = [0, 7]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
4 -> 5 ;
|
|
||||||
6 [label="wielkosc <= 0.5\nentropy = 0.811\nsamples = 4\nvalue = [1, 3]\nclass = 1", fillcolor="#7bbeee"] ;
|
|
||||||
4 -> 6 ;
|
|
||||||
7 [label="ksztalt <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
6 -> 7 ;
|
|
||||||
8 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
7 -> 8 ;
|
|
||||||
9 [label="gorna <= 0.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
7 -> 9 ;
|
|
||||||
10 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
9 -> 10 ;
|
|
||||||
11 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
9 -> 11 ;
|
|
||||||
12 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
6 -> 12 ;
|
|
||||||
13 [label="kruchosc <= 0.5\nentropy = 1.0\nsamples = 12\nvalue = [6, 6]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
3 -> 13 ;
|
|
||||||
14 [label="entropy = 0.0\nsamples = 5\nvalue = [5, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
13 -> 14 ;
|
|
||||||
15 [label="ksztalt <= 0.5\nentropy = 0.592\nsamples = 7\nvalue = [1, 6]\nclass = 1", fillcolor="#5aade9"] ;
|
|
||||||
13 -> 15 ;
|
|
||||||
16 [label="entropy = 0.0\nsamples = 4\nvalue = [0, 4]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
15 -> 16 ;
|
|
||||||
17 [label="gorna <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
15 -> 17 ;
|
|
||||||
18 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
17 -> 18 ;
|
|
||||||
19 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
17 -> 19 ;
|
|
||||||
20 [label="ksztalt <= 0.5\nentropy = 0.684\nsamples = 11\nvalue = [9, 2]\nclass = 0", fillcolor="#eb9d65"] ;
|
|
||||||
2 -> 20 ;
|
|
||||||
21 [label="dolna <= 0.5\nentropy = 1.0\nsamples = 4\nvalue = [2, 2]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
20 -> 21 ;
|
|
||||||
22 [label="kruchosc <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
21 -> 22 ;
|
|
||||||
23 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
22 -> 23 ;
|
|
||||||
24 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
22 -> 24 ;
|
|
||||||
25 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
21 -> 25 ;
|
|
||||||
26 [label="entropy = 0.0\nsamples = 7\nvalue = [7, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
20 -> 26 ;
|
|
||||||
27 [label="gorna <= 0.5\nentropy = 0.449\nsamples = 64\nvalue = [58, 6]\nclass = 0", fillcolor="#e88e4d"] ;
|
|
||||||
1 -> 27 ;
|
|
||||||
28 [label="entropy = 0.0\nsamples = 33\nvalue = [33, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
27 -> 28 ;
|
|
||||||
29 [label="wielkosc <= 1.5\nentropy = 0.709\nsamples = 31\nvalue = [25, 6]\nclass = 0", fillcolor="#eb9f69"] ;
|
|
||||||
27 -> 29 ;
|
|
||||||
30 [label="ksztalt <= 0.5\nentropy = 0.918\nsamples = 18\nvalue = [12, 6]\nclass = 0", fillcolor="#f2c09c"] ;
|
|
||||||
29 -> 30 ;
|
|
||||||
31 [label="kruchosc <= 0.5\nentropy = 1.0\nsamples = 10\nvalue = [5, 5]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
30 -> 31 ;
|
|
||||||
32 [label="dolna <= 0.5\nentropy = 0.722\nsamples = 5\nvalue = [4, 1]\nclass = 0", fillcolor="#eca06a"] ;
|
|
||||||
31 -> 32 ;
|
|
||||||
33 [label="priorytet <= 0.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
32 -> 33 ;
|
|
||||||
34 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
33 -> 34 ;
|
|
||||||
35 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
33 -> 35 ;
|
|
||||||
36 [label="entropy = 0.0\nsamples = 3\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
32 -> 36 ;
|
|
||||||
37 [label="dolna <= 0.5\nentropy = 0.722\nsamples = 5\nvalue = [1, 4]\nclass = 1", fillcolor="#6ab6ec"] ;
|
|
||||||
31 -> 37 ;
|
|
||||||
38 [label="entropy = 0.0\nsamples = 3\nvalue = [0, 3]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
37 -> 38 ;
|
|
||||||
39 [label="waga, <= 1.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
37 -> 39 ;
|
|
||||||
40 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
39 -> 40 ;
|
|
||||||
41 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
39 -> 41 ;
|
|
||||||
42 [label="waga, <= 1.5\nentropy = 0.544\nsamples = 8\nvalue = [7, 1]\nclass = 0", fillcolor="#e99355"] ;
|
|
||||||
30 -> 42 ;
|
|
||||||
43 [label="entropy = 0.0\nsamples = 4\nvalue = [4, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
42 -> 43 ;
|
|
||||||
44 [label="wielkosc <= 0.5\nentropy = 0.811\nsamples = 4\nvalue = [3, 1]\nclass = 0", fillcolor="#eeab7b"] ;
|
|
||||||
42 -> 44 ;
|
|
||||||
45 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
44 -> 45 ;
|
|
||||||
46 [label="kruchosc <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [2, 1]\nclass = 0", fillcolor="#f2c09c"] ;
|
|
||||||
44 -> 46 ;
|
|
||||||
47 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
46 -> 47 ;
|
|
||||||
48 [label="priorytet <= 0.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
46 -> 48 ;
|
|
||||||
49 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
48 -> 49 ;
|
|
||||||
50 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
48 -> 50 ;
|
|
||||||
51 [label="entropy = 0.0\nsamples = 13\nvalue = [13, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
29 -> 51 ;
|
|
||||||
52 [label="wielkosc <= 1.5\nentropy = 0.714\nsamples = 102\nvalue = [20, 82]\nclass = 1", fillcolor="#69b5eb"] ;
|
|
||||||
0 -> 52 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
|
|
||||||
53 [label="waga, <= 0.5\nentropy = 0.469\nsamples = 70\nvalue = [7, 63]\nclass = 1", fillcolor="#4fa8e8"] ;
|
|
||||||
52 -> 53 ;
|
|
||||||
54 [label="entropy = 0.0\nsamples = 21\nvalue = [0, 21]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
53 -> 54 ;
|
|
||||||
55 [label="ksztalt <= 0.5\nentropy = 0.592\nsamples = 49\nvalue = [7, 42]\nclass = 1", fillcolor="#5aade9"] ;
|
|
||||||
53 -> 55 ;
|
|
||||||
56 [label="wielkosc <= 0.5\nentropy = 0.25\nsamples = 24\nvalue = [1, 23]\nclass = 1", fillcolor="#42a1e6"] ;
|
|
||||||
55 -> 56 ;
|
|
||||||
57 [label="entropy = 0.0\nsamples = 15\nvalue = [0, 15]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
56 -> 57 ;
|
|
||||||
58 [label="kruchosc <= 0.5\nentropy = 0.503\nsamples = 9\nvalue = [1, 8]\nclass = 1", fillcolor="#52a9e8"] ;
|
|
||||||
56 -> 58 ;
|
|
||||||
59 [label="dolna <= 0.5\nentropy = 0.722\nsamples = 5\nvalue = [1, 4]\nclass = 1", fillcolor="#6ab6ec"] ;
|
|
||||||
58 -> 59 ;
|
|
||||||
60 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
59 -> 60 ;
|
|
||||||
61 [label="gorna <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
59 -> 61 ;
|
|
||||||
62 [label="priorytet <= 0.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
61 -> 62 ;
|
|
||||||
63 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
62 -> 63 ;
|
|
||||||
64 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
62 -> 64 ;
|
|
||||||
65 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
61 -> 65 ;
|
|
||||||
66 [label="entropy = 0.0\nsamples = 4\nvalue = [0, 4]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
58 -> 66 ;
|
|
||||||
67 [label="kruchosc <= 0.5\nentropy = 0.795\nsamples = 25\nvalue = [6, 19]\nclass = 1", fillcolor="#78bced"] ;
|
|
||||||
55 -> 67 ;
|
|
||||||
68 [label="priorytet <= 0.5\nentropy = 0.98\nsamples = 12\nvalue = [5, 7]\nclass = 1", fillcolor="#c6e3f8"] ;
|
|
||||||
67 -> 68 ;
|
|
||||||
69 [label="dolna <= 0.5\nentropy = 0.764\nsamples = 9\nvalue = [2, 7]\nclass = 1", fillcolor="#72b9ec"] ;
|
|
||||||
68 -> 69 ;
|
|
||||||
70 [label="entropy = 0.0\nsamples = 5\nvalue = [0, 5]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
69 -> 70 ;
|
|
||||||
71 [label="gorna <= 0.5\nentropy = 1.0\nsamples = 4\nvalue = [2, 2]\nclass = 0", fillcolor="#ffffff"] ;
|
|
||||||
69 -> 71 ;
|
|
||||||
72 [label="entropy = 0.0\nsamples = 2\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
71 -> 72 ;
|
|
||||||
73 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
71 -> 73 ;
|
|
||||||
74 [label="entropy = 0.0\nsamples = 3\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
68 -> 74 ;
|
|
||||||
75 [label="dolna <= 0.5\nentropy = 0.391\nsamples = 13\nvalue = [1, 12]\nclass = 1", fillcolor="#49a5e7"] ;
|
|
||||||
67 -> 75 ;
|
|
||||||
76 [label="entropy = 0.0\nsamples = 7\nvalue = [0, 7]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
75 -> 76 ;
|
|
||||||
77 [label="gorna <= 0.5\nentropy = 0.65\nsamples = 6\nvalue = [1, 5]\nclass = 1", fillcolor="#61b1ea"] ;
|
|
||||||
75 -> 77 ;
|
|
||||||
78 [label="priorytet <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
77 -> 78 ;
|
|
||||||
79 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
78 -> 79 ;
|
|
||||||
80 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
78 -> 80 ;
|
|
||||||
81 [label="entropy = 0.0\nsamples = 3\nvalue = [0, 3]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
77 -> 81 ;
|
|
||||||
82 [label="gorna <= 0.5\nentropy = 0.974\nsamples = 32\nvalue = [13, 19]\nclass = 1", fillcolor="#c0e0f7"] ;
|
|
||||||
52 -> 82 ;
|
|
||||||
83 [label="kruchosc <= 0.5\nentropy = 0.65\nsamples = 12\nvalue = [10, 2]\nclass = 0", fillcolor="#ea9a61"] ;
|
|
||||||
82 -> 83 ;
|
|
||||||
84 [label="entropy = 0.0\nsamples = 7\nvalue = [7, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
83 -> 84 ;
|
|
||||||
85 [label="waga, <= 1.5\nentropy = 0.971\nsamples = 5\nvalue = [3, 2]\nclass = 0", fillcolor="#f6d5bd"] ;
|
|
||||||
83 -> 85 ;
|
|
||||||
86 [label="priorytet <= 0.5\nentropy = 0.918\nsamples = 3\nvalue = [1, 2]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
85 -> 86 ;
|
|
||||||
87 [label="entropy = 0.0\nsamples = 2\nvalue = [0, 2]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
86 -> 87 ;
|
|
||||||
88 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
86 -> 88 ;
|
|
||||||
89 [label="entropy = 0.0\nsamples = 2\nvalue = [2, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
85 -> 89 ;
|
|
||||||
90 [label="dolna <= 0.5\nentropy = 0.61\nsamples = 20\nvalue = [3, 17]\nclass = 1", fillcolor="#5caeea"] ;
|
|
||||||
82 -> 90 ;
|
|
||||||
91 [label="entropy = 0.0\nsamples = 11\nvalue = [0, 11]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
90 -> 91 ;
|
|
||||||
92 [label="kruchosc <= 0.5\nentropy = 0.918\nsamples = 9\nvalue = [3, 6]\nclass = 1", fillcolor="#9ccef2"] ;
|
|
||||||
90 -> 92 ;
|
|
||||||
93 [label="waga, <= 0.5\nentropy = 0.811\nsamples = 4\nvalue = [3, 1]\nclass = 0", fillcolor="#eeab7b"] ;
|
|
||||||
92 -> 93 ;
|
|
||||||
94 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
93 -> 94 ;
|
|
||||||
95 [label="entropy = 0.0\nsamples = 3\nvalue = [3, 0]\nclass = 0", fillcolor="#e58139"] ;
|
|
||||||
93 -> 95 ;
|
|
||||||
96 [label="entropy = 0.0\nsamples = 5\nvalue = [0, 5]\nclass = 1", fillcolor="#399de5"] ;
|
|
||||||
92 -> 96 ;
|
|
||||||
}
|
|
@ -1,201 +0,0 @@
|
|||||||
wielkosc,"waga,",priorytet,ksztalt,kruchosc,dolna,gorna,g > d,polka
|
|
||||||
1,0,0,1,0,0,1,0,1
|
|
||||||
0,0,1,0,1,1,0,1,1
|
|
||||||
2,0,1,1,0,0,0,1,0
|
|
||||||
2,2,1,0,1,1,1,0,0
|
|
||||||
1,0,0,1,0,0,0,1,1
|
|
||||||
2,1,0,0,1,1,0,0,0
|
|
||||||
1,0,0,0,1,0,0,1,1
|
|
||||||
1,1,0,1,0,0,0,1,1
|
|
||||||
0,0,1,0,1,1,1,0,1
|
|
||||||
0,2,0,0,0,1,1,0,0
|
|
||||||
0,0,1,0,0,1,0,1,1
|
|
||||||
0,0,0,0,0,1,1,0,1
|
|
||||||
0,2,1,0,1,1,0,0,0
|
|
||||||
2,0,0,0,1,0,0,0,1
|
|
||||||
2,1,0,1,0,1,1,1,0
|
|
||||||
0,1,1,0,1,1,1,0,0
|
|
||||||
0,2,0,1,1,1,0,1,1
|
|
||||||
1,2,1,0,1,1,0,0,0
|
|
||||||
0,0,1,1,1,1,0,1,1
|
|
||||||
0,0,0,1,1,0,0,1,1
|
|
||||||
1,1,1,1,1,0,1,0,0
|
|
||||||
1,2,1,0,0,1,1,1,1
|
|
||||||
2,2,1,1,0,1,1,1,0
|
|
||||||
1,2,1,0,1,1,0,1,1
|
|
||||||
0,1,0,0,0,1,0,1,1
|
|
||||||
1,1,0,0,0,1,0,1,1
|
|
||||||
0,1,0,0,0,1,1,1,1
|
|
||||||
2,1,0,1,0,1,0,1,0
|
|
||||||
0,1,1,0,1,1,0,0,0
|
|
||||||
2,1,0,1,0,1,1,0,0
|
|
||||||
1,2,1,0,0,0,1,1,1
|
|
||||||
1,2,0,1,0,1,1,1,1
|
|
||||||
0,2,0,1,0,1,0,1,0
|
|
||||||
2,1,1,0,1,1,1,1,1
|
|
||||||
0,2,0,1,0,0,0,1,1
|
|
||||||
0,1,1,0,0,1,1,0,0
|
|
||||||
2,2,1,0,0,0,1,1,1
|
|
||||||
1,0,0,0,0,0,1,0,1
|
|
||||||
0,0,1,1,0,1,0,0,0
|
|
||||||
2,2,0,1,1,1,0,0,0
|
|
||||||
1,2,1,1,0,0,0,1,0
|
|
||||||
1,2,0,1,0,0,1,1,1
|
|
||||||
0,1,0,1,1,1,1,0,0
|
|
||||||
0,1,0,0,1,1,0,0,0
|
|
||||||
0,1,0,1,1,0,0,0,0
|
|
||||||
1,1,1,0,1,1,0,1,1
|
|
||||||
1,1,1,1,0,1,1,0,0
|
|
||||||
2,1,1,1,0,1,1,0,0
|
|
||||||
2,2,0,0,1,1,0,0,0
|
|
||||||
1,0,0,1,0,1,0,1,1
|
|
||||||
2,1,1,1,1,0,1,0,0
|
|
||||||
0,0,0,0,1,1,0,0,1
|
|
||||||
2,1,1,1,0,1,0,1,0
|
|
||||||
1,2,1,1,1,0,1,1,1
|
|
||||||
0,2,0,0,1,1,1,1,1
|
|
||||||
2,1,0,1,1,0,0,0,0
|
|
||||||
0,2,1,1,1,0,1,1,1
|
|
||||||
1,2,0,1,1,1,1,0,1
|
|
||||||
0,2,0,0,0,1,0,1,1
|
|
||||||
1,2,0,0,0,1,0,0,0
|
|
||||||
2,0,0,1,0,1,1,1,1
|
|
||||||
2,1,1,0,0,0,1,1,1
|
|
||||||
0,1,1,1,0,1,0,0,0
|
|
||||||
2,1,0,1,1,1,0,0,0
|
|
||||||
0,2,0,1,0,0,0,0,0
|
|
||||||
2,1,0,0,1,0,0,1,1
|
|
||||||
1,1,0,0,1,1,0,0,0
|
|
||||||
2,0,0,1,0,0,1,1,1
|
|
||||||
2,0,1,1,1,0,1,1,1
|
|
||||||
2,2,0,1,1,0,0,0,0
|
|
||||||
0,1,0,1,1,1,0,1,1
|
|
||||||
1,0,1,1,1,0,0,0,0
|
|
||||||
2,0,0,1,1,1,1,1,1
|
|
||||||
1,0,0,0,0,0,0,1,1
|
|
||||||
2,1,1,0,0,0,0,1,0
|
|
||||||
0,0,0,0,1,1,0,1,1
|
|
||||||
0,1,0,1,0,0,0,1,1
|
|
||||||
2,2,0,1,0,0,0,0,0
|
|
||||||
0,2,1,1,1,1,0,1,0
|
|
||||||
2,2,1,0,0,1,1,0,0
|
|
||||||
1,2,0,0,1,1,1,0,1
|
|
||||||
0,1,1,1,0,0,0,1,0
|
|
||||||
1,1,1,0,1,0,0,0,0
|
|
||||||
2,0,1,1,0,0,1,1,1
|
|
||||||
2,0,1,0,1,0,1,0,1
|
|
||||||
2,2,0,0,0,1,1,0,0
|
|
||||||
1,1,0,1,1,0,1,1,1
|
|
||||||
2,0,0,0,0,0,1,1,1
|
|
||||||
1,2,0,0,1,1,0,1,1
|
|
||||||
1,2,1,1,0,0,0,0,0
|
|
||||||
0,0,1,1,1,1,1,0,1
|
|
||||||
0,2,1,1,0,1,0,0,0
|
|
||||||
2,1,1,0,0,0,1,0,0
|
|
||||||
1,0,0,1,1,0,0,0,1
|
|
||||||
2,2,0,1,1,1,0,1,0
|
|
||||||
2,0,0,1,1,1,0,0,0
|
|
||||||
0,2,1,0,0,0,0,0,0
|
|
||||||
1,2,1,1,1,0,0,1,1
|
|
||||||
0,0,0,0,0,1,1,1,1
|
|
||||||
2,2,1,1,1,0,1,1,1
|
|
||||||
0,1,0,0,1,0,1,0,1
|
|
||||||
2,1,1,0,1,1,0,0,0
|
|
||||||
0,1,1,1,1,1,1,1,1
|
|
||||||
1,2,1,1,1,0,1,0,0
|
|
||||||
2,0,1,1,1,1,1,0,0
|
|
||||||
1,0,1,1,0,0,1,0,0
|
|
||||||
0,2,0,0,1,0,0,1,1
|
|
||||||
2,2,0,0,0,1,0,0,0
|
|
||||||
0,2,0,0,1,1,0,0,0
|
|
||||||
0,1,0,0,0,0,1,1,1
|
|
||||||
1,0,0,0,0,1,0,1,1
|
|
||||||
2,1,0,0,0,0,1,0,0
|
|
||||||
0,1,1,0,0,1,0,0,0
|
|
||||||
1,0,1,0,1,0,1,0,1
|
|
||||||
2,0,0,0,1,1,0,0,0
|
|
||||||
0,0,0,0,0,0,0,0,1
|
|
||||||
0,0,1,0,1,0,0,0,1
|
|
||||||
1,0,1,0,0,0,0,0,0
|
|
||||||
0,2,1,0,0,0,0,1,1
|
|
||||||
2,0,0,1,1,1,0,1,1
|
|
||||||
0,2,0,1,1,1,1,0,0
|
|
||||||
0,2,1,1,1,1,1,1,1
|
|
||||||
1,2,0,1,0,1,1,0,0
|
|
||||||
0,2,1,0,0,1,0,0,0
|
|
||||||
2,0,1,1,1,1,1,1,1
|
|
||||||
0,0,0,1,1,1,1,1,1
|
|
||||||
1,2,0,1,1,0,0,0,0
|
|
||||||
1,2,0,1,1,0,0,1,1
|
|
||||||
2,2,0,1,0,0,1,0,0
|
|
||||||
2,2,0,0,0,0,1,0,0
|
|
||||||
0,0,0,1,0,0,1,0,1
|
|
||||||
1,0,1,0,1,0,0,0,1
|
|
||||||
0,2,0,0,0,0,0,0,0
|
|
||||||
2,0,1,0,1,1,1,1,1
|
|
||||||
0,2,1,0,0,0,1,1,1
|
|
||||||
0,2,1,0,1,1,1,1,1
|
|
||||||
2,2,1,0,1,0,1,0,0
|
|
||||||
1,1,1,1,1,1,1,1,1
|
|
||||||
0,1,1,0,1,0,0,0,0
|
|
||||||
2,1,1,0,0,1,1,1,0
|
|
||||||
0,0,1,0,1,1,1,1,1
|
|
||||||
0,1,1,0,1,0,1,0,1
|
|
||||||
2,0,0,1,0,0,1,0,0
|
|
||||||
1,1,0,1,1,1,1,0,0
|
|
||||||
2,0,0,1,1,1,1,0,0
|
|
||||||
0,0,1,0,0,1,1,0,0
|
|
||||||
1,0,1,0,1,1,1,1,1
|
|
||||||
0,1,0,0,0,0,0,1,1
|
|
||||||
0,2,0,1,1,0,0,1,1
|
|
||||||
2,1,1,0,1,0,1,1,1
|
|
||||||
1,1,1,1,1,0,1,1,1
|
|
||||||
1,0,1,1,0,0,1,1,1
|
|
||||||
1,0,0,1,1,0,0,1,1
|
|
||||||
2,1,1,1,0,0,1,0,0
|
|
||||||
1,0,0,0,0,0,0,0,1
|
|
||||||
0,0,0,1,1,1,1,0,1
|
|
||||||
1,0,1,1,0,0,0,1,1
|
|
||||||
2,1,1,1,1,0,1,1,1
|
|
||||||
1,2,0,1,0,1,0,1,0
|
|
||||||
1,1,0,0,0,1,1,0,0
|
|
||||||
2,2,1,0,1,1,0,1,0
|
|
||||||
0,0,0,0,0,0,1,0,1
|
|
||||||
0,2,0,0,0,1,1,1,1
|
|
||||||
2,1,0,0,0,0,1,1,1
|
|
||||||
0,0,0,1,1,1,0,0,0
|
|
||||||
1,0,1,0,0,1,1,0,0
|
|
||||||
2,0,0,0,1,1,1,1,1
|
|
||||||
1,2,1,0,0,0,0,1,1
|
|
||||||
2,2,0,0,0,1,0,1,0
|
|
||||||
0,1,1,0,0,0,1,0,0
|
|
||||||
0,2,0,0,1,0,1,0,1
|
|
||||||
1,1,0,0,1,1,1,1,1
|
|
||||||
0,0,0,1,0,0,1,1,1
|
|
||||||
0,1,1,0,0,1,1,1,1
|
|
||||||
2,2,0,1,1,0,1,0,0
|
|
||||||
1,0,1,0,1,0,1,1,1
|
|
||||||
1,1,0,1,0,0,1,1,1
|
|
||||||
2,0,1,1,0,0,1,0,0
|
|
||||||
2,0,1,0,0,0,1,0,0
|
|
||||||
1,1,1,1,0,1,1,1,0
|
|
||||||
2,1,1,0,1,0,0,0,0
|
|
||||||
0,2,0,1,1,0,0,0,0
|
|
||||||
1,2,1,1,0,1,0,0,0
|
|
||||||
2,1,1,1,1,1,0,1,0
|
|
||||||
0,2,0,1,0,1,1,1,1
|
|
||||||
0,2,1,0,1,0,0,1,1
|
|
||||||
0,1,1,0,0,0,1,1,1
|
|
||||||
1,0,0,1,1,0,1,1,1
|
|
||||||
2,2,1,1,0,0,0,0,0
|
|
||||||
0,1,1,0,0,0,0,0,0
|
|
||||||
2,0,1,1,0,1,0,0,0
|
|
||||||
0,1,1,0,0,0,0,1,1
|
|
||||||
0,0,1,1,1,0,1,0,1
|
|
||||||
0,2,0,0,0,0,1,0,1
|
|
||||||
2,0,0,1,0,1,1,0,0
|
|
||||||
0,0,1,0,1,0,1,1,1
|
|
||||||
2,2,0,0,1,0,1,1,1
|
|
||||||
2,2,0,1,0,0,0,1,0
|
|
||||||
2,2,0,1,0,1,0,1,0
|
|
||||||
1,2,1,0,0,1,0,1,0
|
|
|
@ -1,200 +0,0 @@
|
|||||||
1;0;0;1;0;0;1;0
|
|
||||||
0;0;1;0;1;1;0;1
|
|
||||||
2;0;1;1;0;0;0;1
|
|
||||||
2;2;1;0;1;1;1;0
|
|
||||||
1;0;0;1;0;0;0;1
|
|
||||||
2;1;0;0;1;1;0;0
|
|
||||||
1;0;0;0;1;0;0;1
|
|
||||||
1;1;0;1;0;0;0;1
|
|
||||||
0;0;1;0;1;1;1;0
|
|
||||||
0;2;0;0;0;1;1;0
|
|
||||||
0;0;1;0;0;1;0;1
|
|
||||||
0;0;0;0;0;1;1;0
|
|
||||||
0;2;1;0;1;1;0;0
|
|
||||||
2;0;0;0;1;0;0;0
|
|
||||||
2;1;0;1;0;1;1;1
|
|
||||||
0;1;1;0;1;1;1;0
|
|
||||||
0;2;0;1;1;1;0;1
|
|
||||||
1;2;1;0;1;1;0;0
|
|
||||||
0;0;1;1;1;1;0;1
|
|
||||||
0;0;0;1;1;0;0;1
|
|
||||||
1;1;1;1;1;0;1;0
|
|
||||||
1;2;1;0;0;1;1;1
|
|
||||||
2;2;1;1;0;1;1;1
|
|
||||||
1;2;1;0;1;1;0;1
|
|
||||||
0;1;0;0;0;1;0;1
|
|
||||||
1;1;0;0;0;1;0;1
|
|
||||||
0;1;0;0;0;1;1;1
|
|
||||||
2;1;0;1;0;1;0;1
|
|
||||||
0;1;1;0;1;1;0;0
|
|
||||||
2;1;0;1;0;1;1;0
|
|
||||||
1;2;1;0;0;0;1;1
|
|
||||||
1;2;0;1;0;1;1;1
|
|
||||||
0;2;0;1;0;1;0;1
|
|
||||||
2;1;1;0;1;1;1;1
|
|
||||||
0;2;0;1;0;0;0;1
|
|
||||||
0;1;1;0;0;1;1;0
|
|
||||||
2;2;1;0;0;0;1;1
|
|
||||||
1;0;0;0;0;0;1;0
|
|
||||||
0;0;1;1;0;1;0;0
|
|
||||||
2;2;0;1;1;1;0;0
|
|
||||||
1;2;1;1;0;0;0;1
|
|
||||||
1;2;0;1;0;0;1;1
|
|
||||||
0;1;0;1;1;1;1;0
|
|
||||||
0;1;0;0;1;1;0;0
|
|
||||||
0;1;0;1;1;0;0;0
|
|
||||||
1;1;1;0;1;1;0;1
|
|
||||||
1;1;1;1;0;1;1;0
|
|
||||||
2;1;1;1;0;1;1;0
|
|
||||||
2;2;0;0;1;1;0;0
|
|
||||||
1;0;0;1;0;1;0;1
|
|
||||||
2;1;1;1;1;0;1;0
|
|
||||||
0;0;0;0;1;1;0;0
|
|
||||||
2;1;1;1;0;1;0;1
|
|
||||||
1;2;1;1;1;0;1;1
|
|
||||||
0;2;0;0;1;1;1;1
|
|
||||||
2;1;0;1;1;0;0;0
|
|
||||||
0;2;1;1;1;0;1;1
|
|
||||||
1;2;0;1;1;1;1;0
|
|
||||||
0;2;0;0;0;1;0;1
|
|
||||||
1;2;0;0;0;1;0;0
|
|
||||||
2;0;0;1;0;1;1;1
|
|
||||||
2;1;1;0;0;0;1;1
|
|
||||||
0;1;1;1;0;1;0;0
|
|
||||||
2;1;0;1;1;1;0;0
|
|
||||||
0;2;0;1;0;0;0;0
|
|
||||||
2;1;0;0;1;0;0;1
|
|
||||||
1;1;0;0;1;1;0;0
|
|
||||||
2;0;0;1;0;0;1;1
|
|
||||||
2;0;1;1;1;0;1;1
|
|
||||||
2;2;0;1;1;0;0;0
|
|
||||||
0;1;0;1;1;1;0;1
|
|
||||||
1;0;1;1;1;0;0;0
|
|
||||||
2;0;0;1;1;1;1;1
|
|
||||||
1;0;0;0;0;0;0;1
|
|
||||||
2;1;1;0;0;0;0;1
|
|
||||||
0;0;0;0;1;1;0;1
|
|
||||||
0;1;0;1;0;0;0;1
|
|
||||||
2;2;0;1;0;0;0;0
|
|
||||||
0;2;1;1;1;1;0;1
|
|
||||||
2;2;1;0;0;1;1;0
|
|
||||||
1;2;0;0;1;1;1;0
|
|
||||||
0;1;1;1;0;0;0;1
|
|
||||||
1;1;1;0;1;0;0;0
|
|
||||||
2;0;1;1;0;0;1;1
|
|
||||||
2;0;1;0;1;0;1;0
|
|
||||||
2;2;0;0;0;1;1;0
|
|
||||||
1;1;0;1;1;0;1;1
|
|
||||||
2;0;0;0;0;0;1;1
|
|
||||||
1;2;0;0;1;1;0;1
|
|
||||||
1;2;1;1;0;0;0;0
|
|
||||||
0;0;1;1;1;1;1;0
|
|
||||||
0;2;1;1;0;1;0;0
|
|
||||||
2;1;1;0;0;0;1;0
|
|
||||||
1;0;0;1;1;0;0;0
|
|
||||||
2;2;0;1;1;1;0;1
|
|
||||||
2;0;0;1;1;1;0;0
|
|
||||||
0;2;1;0;0;0;0;0
|
|
||||||
1;2;1;1;1;0;0;1
|
|
||||||
0;0;0;0;0;1;1;1
|
|
||||||
2;2;1;1;1;0;1;1
|
|
||||||
0;1;0;0;1;0;1;0
|
|
||||||
2;1;1;0;1;1;0;0
|
|
||||||
0;1;1;1;1;1;1;1
|
|
||||||
1;2;1;1;1;0;1;0
|
|
||||||
2;0;1;1;1;1;1;0
|
|
||||||
1;0;1;1;0;0;1;0
|
|
||||||
0;2;0;0;1;0;0;1
|
|
||||||
2;2;0;0;0;1;0;0
|
|
||||||
0;2;0;0;1;1;0;0
|
|
||||||
0;1;0;0;0;0;1;1
|
|
||||||
1;0;0;0;0;1;0;1
|
|
||||||
2;1;0;0;0;0;1;0
|
|
||||||
0;1;1;0;0;1;0;0
|
|
||||||
1;0;1;0;1;0;1;0
|
|
||||||
2;0;0;0;1;1;0;0
|
|
||||||
0;0;0;0;0;0;0;0
|
|
||||||
0;0;1;0;1;0;0;0
|
|
||||||
1;0;1;0;0;0;0;0
|
|
||||||
0;2;1;0;0;0;0;1
|
|
||||||
2;0;0;1;1;1;0;1
|
|
||||||
0;2;0;1;1;1;1;0
|
|
||||||
0;2;1;1;1;1;1;1
|
|
||||||
1;2;0;1;0;1;1;0
|
|
||||||
0;2;1;0;0;1;0;0
|
|
||||||
2;0;1;1;1;1;1;1
|
|
||||||
0;0;0;1;1;1;1;1
|
|
||||||
1;2;0;1;1;0;0;0
|
|
||||||
1;2;0;1;1;0;0;1
|
|
||||||
2;2;0;1;0;0;1;0
|
|
||||||
2;2;0;0;0;0;1;0
|
|
||||||
0;0;0;1;0;0;1;0
|
|
||||||
1;0;1;0;1;0;0;0
|
|
||||||
0;2;0;0;0;0;0;0
|
|
||||||
2;0;1;0;1;1;1;1
|
|
||||||
0;2;1;0;0;0;1;1
|
|
||||||
0;2;1;0;1;1;1;1
|
|
||||||
2;2;1;0;1;0;1;0
|
|
||||||
1;1;1;1;1;1;1;1
|
|
||||||
0;1;1;0;1;0;0;0
|
|
||||||
2;1;1;0;0;1;1;1
|
|
||||||
0;0;1;0;1;1;1;1
|
|
||||||
0;1;1;0;1;0;1;0
|
|
||||||
2;0;0;1;0;0;1;0
|
|
||||||
1;1;0;1;1;1;1;0
|
|
||||||
2;0;0;1;1;1;1;0
|
|
||||||
0;0;1;0;0;1;1;0
|
|
||||||
1;0;1;0;1;1;1;1
|
|
||||||
0;1;0;0;0;0;0;1
|
|
||||||
0;2;0;1;1;0;0;1
|
|
||||||
2;1;1;0;1;0;1;1
|
|
||||||
1;1;1;1;1;0;1;1
|
|
||||||
1;0;1;1;0;0;1;1
|
|
||||||
1;0;0;1;1;0;0;1
|
|
||||||
2;1;1;1;0;0;1;0
|
|
||||||
1;0;0;0;0;0;0;0
|
|
||||||
0;0;0;1;1;1;1;0
|
|
||||||
1;0;1;1;0;0;0;1
|
|
||||||
2;1;1;1;1;0;1;1
|
|
||||||
1;2;0;1;0;1;0;1
|
|
||||||
1;1;0;0;0;1;1;0
|
|
||||||
2;2;1;0;1;1;0;1
|
|
||||||
0;0;0;0;0;0;1;0
|
|
||||||
0;2;0;0;0;1;1;1
|
|
||||||
2;1;0;0;0;0;1;1
|
|
||||||
0;0;0;1;1;1;0;0
|
|
||||||
1;0;1;0;0;1;1;0
|
|
||||||
2;0;0;0;1;1;1;1
|
|
||||||
1;2;1;0;0;0;0;1
|
|
||||||
2;2;0;0;0;1;0;1
|
|
||||||
0;1;1;0;0;0;1;0
|
|
||||||
0;2;0;0;1;0;1;0
|
|
||||||
1;1;0;0;1;1;1;1
|
|
||||||
0;0;0;1;0;0;1;1
|
|
||||||
0;1;1;0;0;1;1;1
|
|
||||||
2;2;0;1;1;0;1;0
|
|
||||||
1;0;1;0;1;0;1;1
|
|
||||||
1;1;0;1;0;0;1;1
|
|
||||||
2;0;1;1;0;0;1;0
|
|
||||||
2;0;1;0;0;0;1;0
|
|
||||||
1;1;1;1;0;1;1;1
|
|
||||||
2;1;1;0;1;0;0;0
|
|
||||||
0;2;0;1;1;0;0;0
|
|
||||||
1;2;1;1;0;1;0;0
|
|
||||||
2;1;1;1;1;1;0;1
|
|
||||||
0;2;0;1;0;1;1;1
|
|
||||||
0;2;1;0;1;0;0;1
|
|
||||||
0;1;1;0;0;0;1;1
|
|
||||||
1;0;0;1;1;0;1;1
|
|
||||||
2;2;1;1;0;0;0;0
|
|
||||||
0;1;1;0;0;0;0;0
|
|
||||||
2;0;1;1;0;1;0;0
|
|
||||||
0;1;1;0;0;0;0;1
|
|
||||||
0;0;1;1;1;0;1;0
|
|
||||||
0;2;0;0;0;0;1;0
|
|
||||||
2;0;0;1;0;1;1;0
|
|
||||||
0;0;1;0;1;0;1;1
|
|
||||||
2;2;0;0;1;0;1;1
|
|
||||||
2;2;0;1;0;0;0;1
|
|
||||||
2;2;0;1;0;1;0;1
|
|
||||||
1;2;1;0;0;1;0;1
|
|
@ -1,31 +0,0 @@
|
|||||||
Epoch: 1 Train Loss: 65 Train Accuracy: 0.5754245754245755
|
|
||||||
Epoch: 2 Train Loss: 25 Train Accuracy: 0.7457542457542458
|
|
||||||
Epoch: 3 Train Loss: 8 Train Accuracy: 0.8431568431568431
|
|
||||||
Epoch: 4 Train Loss: 2 Train Accuracy: 0.9010989010989011
|
|
||||||
Epoch: 5 Train Loss: 1 Train Accuracy: 0.9335664335664335
|
|
||||||
Epoch: 6 Train Loss: 0 Train Accuracy: 0.9545454545454546
|
|
||||||
Epoch: 7 Train Loss: 0 Train Accuracy: 0.972027972027972
|
|
||||||
Epoch: 8 Train Loss: 0 Train Accuracy: 0.9820179820179821
|
|
||||||
Epoch: 9 Train Loss: 0 Train Accuracy: 0.994005994005994
|
|
||||||
Epoch: 10 Train Loss: 0 Train Accuracy: 0.9945054945054945
|
|
||||||
|
|
||||||
Epoch: 1 Train Loss: 42 Train Accuracy: 0.6428571428571429
|
|
||||||
Epoch: 2 Train Loss: 11 Train Accuracy: 0.8306693306693307
|
|
||||||
Epoch: 3 Train Loss: 3 Train Accuracy: 0.8921078921078921
|
|
||||||
Epoch: 4 Train Loss: 2 Train Accuracy: 0.8891108891108891
|
|
||||||
Epoch: 5 Train Loss: 1 Train Accuracy: 0.9335664335664335
|
|
||||||
Epoch: 6 Train Loss: 0 Train Accuracy: 0.952047952047952
|
|
||||||
Epoch: 7 Train Loss: 0 Train Accuracy: 0.9545454545454546
|
|
||||||
Epoch: 8 Train Loss: 0 Train Accuracy: 0.9655344655344655
|
|
||||||
Epoch: 9 Train Loss: 0 Train Accuracy: 0.9815184815184815
|
|
||||||
Epoch: 10 Train Loss: 0 Train Accuracy: 0.9805194805194806
|
|
||||||
Epoch: 11 Train Loss: 0 Train Accuracy: 0.9855144855144855
|
|
||||||
Epoch: 12 Train Loss: 0 Train Accuracy: 0.989010989010989
|
|
||||||
Epoch: 13 Train Loss: 0 Train Accuracy: 0.9925074925074925
|
|
||||||
Epoch: 14 Train Loss: 0 Train Accuracy: 0.9915084915084915
|
|
||||||
Epoch: 15 Train Loss: 0 Train Accuracy: 0.9885114885114885
|
|
||||||
Epoch: 16 Train Loss: 0 Train Accuracy: 0.994005994005994
|
|
||||||
Epoch: 17 Train Loss: 0 Train Accuracy: 0.997002997002997
|
|
||||||
Epoch: 18 Train Loss: 0 Train Accuracy: 0.9965034965034965
|
|
||||||
Epoch: 19 Train Loss: 0 Train Accuracy: 0.999000999000999
|
|
||||||
Epoch: 20 Train Loss: 0 Train Accuracy: 1.0
|
|
@ -1,60 +0,0 @@
|
|||||||
import glob
|
|
||||||
from src.torchvision_resize_dataset import combined_dataset, images_path, classes
|
|
||||||
import src.data_model
|
|
||||||
from torch.optim import Adam
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
|
|
||||||
train_loader = DataLoader(
|
|
||||||
combined_dataset, #dataset of images
|
|
||||||
batch_size=256, # accuracy
|
|
||||||
shuffle=True # rand order
|
|
||||||
)
|
|
||||||
|
|
||||||
model = src.data_model.DataModel(num_objects=2).to(device)
|
|
||||||
|
|
||||||
#optimizer
|
|
||||||
optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.0001)
|
|
||||||
#loss function
|
|
||||||
criterion = nn.CrossEntropyLoss()
|
|
||||||
|
|
||||||
num_epochs = 20
|
|
||||||
# train_size = len(glob.glob(images_path+'*.jpg'))
|
|
||||||
train_size = 2002
|
|
||||||
|
|
||||||
go_to_accuracy = 0.0
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
#training on dataset
|
|
||||||
model.train()
|
|
||||||
train_accuracy = 0.0
|
|
||||||
train_loss = 0.0
|
|
||||||
for i, (images, labels) in enumerate(train_loader):
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
images = torch.Variable(images.cuda())
|
|
||||||
labels = torch.Variable(labels.cuda())
|
|
||||||
# clearing the optimizer gradients
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
outputs = model(images) # predoction
|
|
||||||
loss = criterion(outputs, labels) #loss calculation
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
train_loss += loss.cpu().data*images.size(0)
|
|
||||||
_, prediction = torch.max(outputs.data, 1)
|
|
||||||
|
|
||||||
train_accuracy += int(torch.sum(prediction == labels.data))
|
|
||||||
|
|
||||||
train_accuracy = train_accuracy/train_size
|
|
||||||
train_loss = train_loss/train_size
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
print('Epoch: '+ str(epoch+1) +' Train Loss: '+ str(int(train_loss)) +' Train Accuracy: '+ str(train_accuracy))
|
|
||||||
|
|
||||||
if train_accuracy > go_to_accuracy:
|
|
||||||
go_to_accuracy= train_accuracy
|
|
||||||
torch.save(model.state_dict(), "best_model.pth")
|
|
@ -1,147 +0,0 @@
|
|||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from torchvision.transforms import transforms
|
|
||||||
import numpy as np
|
|
||||||
from torch.autograd import Variable
|
|
||||||
from torchvision.models import squeezenet1_1
|
|
||||||
import torch.functional as F
|
|
||||||
from io import open
|
|
||||||
import os
|
|
||||||
from PIL import Image
|
|
||||||
import pathlib
|
|
||||||
import glob
|
|
||||||
from tkinter import Tk, Label
|
|
||||||
from PIL import Image, ImageTk
|
|
||||||
|
|
||||||
absolute_path = os.path.abspath('NeuralNetwork/src/train_images')
|
|
||||||
train_path = absolute_path
|
|
||||||
absolute_path = os.path.abspath('Images/Items_test')
|
|
||||||
pred_path = absolute_path
|
|
||||||
|
|
||||||
root=pathlib.Path(train_path)
|
|
||||||
classes=sorted([j.name.split('/')[-1] for j in root.iterdir()])
|
|
||||||
|
|
||||||
|
|
||||||
class DataModel(nn.Module):
|
|
||||||
def __init__(self, num_classes):
|
|
||||||
super(DataModel, self).__init__()
|
|
||||||
#input (batch=256, nr of channels rgb=3 , size=244x244)
|
|
||||||
|
|
||||||
# convolution
|
|
||||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
|
|
||||||
#shape (256, 12, 224x224)
|
|
||||||
|
|
||||||
# batch normalization
|
|
||||||
self.bn1 = nn.BatchNorm2d(num_features=12)
|
|
||||||
#shape (256, 12, 224x224)
|
|
||||||
self.reul1 = nn.ReLU()
|
|
||||||
|
|
||||||
self.pool=nn.MaxPool2d(kernel_size=2, stride=2)
|
|
||||||
# reduce image size by factor 2
|
|
||||||
# pooling window moves by 2 pixels at a time instead of 1
|
|
||||||
# shape (256, 12, 112x112)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
self.conv2 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=3, stride=1, padding=1)
|
|
||||||
self.bn2 = nn.BatchNorm2d(num_features=24)
|
|
||||||
self.reul2 = nn.ReLU()
|
|
||||||
# shape (256, 24, 112x112)
|
|
||||||
|
|
||||||
self.conv3 = nn.Conv2d(in_channels=24, out_channels=48, kernel_size=3, stride=1, padding=1)
|
|
||||||
#shape (256, 48, 112x112)
|
|
||||||
self.bn3 = nn.BatchNorm2d(num_features=48)
|
|
||||||
#shape (256, 48, 112x112)
|
|
||||||
self.reul3 = nn.ReLU()
|
|
||||||
|
|
||||||
# connected layer
|
|
||||||
self.fc = nn.Linear(in_features=48*112*112, out_features=num_classes)
|
|
||||||
|
|
||||||
def forward(self, input):
|
|
||||||
output = self.conv1(input)
|
|
||||||
output = self.bn1(output)
|
|
||||||
output = self.reul1(output)
|
|
||||||
|
|
||||||
output = self.pool(output)
|
|
||||||
output = self.conv2(output)
|
|
||||||
output = self.bn2(output)
|
|
||||||
output = self.reul2(output)
|
|
||||||
|
|
||||||
output = self.conv3(output)
|
|
||||||
output = self.bn3(output)
|
|
||||||
output = self.reul3(output)
|
|
||||||
|
|
||||||
# output shape matrix (256, 48, 112x112)
|
|
||||||
#print(output.shape)
|
|
||||||
#print(self.fc.weight.shape)
|
|
||||||
|
|
||||||
output = output.view(-1, 48*112*112)
|
|
||||||
output = self.fc(output)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
script_dir = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
file_path = os.path.join(script_dir, 'best_model.pth')
|
|
||||||
checkpoint=torch.load(file_path)
|
|
||||||
model = DataModel(num_classes=2)
|
|
||||||
model.load_state_dict(checkpoint)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
transformer = transforms.Compose([
|
|
||||||
transforms.Resize((224, 224)), # Resize images to (224, 224)
|
|
||||||
transforms.ToTensor(), # Convert images to tensors, 0-255 to 0-1
|
|
||||||
# transforms.RandomHorizontalFlip(), # 0.5 chance to flip the image
|
|
||||||
transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
|
|
||||||
])
|
|
||||||
|
|
||||||
def prediction(img_path,transformer):
|
|
||||||
|
|
||||||
image=Image.open(img_path)
|
|
||||||
|
|
||||||
image_tensor=transformer(image).float()
|
|
||||||
|
|
||||||
image_tensor=image_tensor.unsqueeze_(0)
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
image_tensor.cuda()
|
|
||||||
|
|
||||||
input=Variable(image_tensor)
|
|
||||||
|
|
||||||
output=model(input)
|
|
||||||
|
|
||||||
index=output.data.numpy().argmax()
|
|
||||||
|
|
||||||
pred=classes[index]
|
|
||||||
|
|
||||||
return pred
|
|
||||||
|
|
||||||
def prediction_keys():
|
|
||||||
|
|
||||||
#funkcja zwracajaca sciezki do kazdego pliku w folderze w postaci listy
|
|
||||||
|
|
||||||
images_path=glob.glob(pred_path+'/*.jpg')
|
|
||||||
|
|
||||||
pred_list=[]
|
|
||||||
|
|
||||||
for i in images_path:
|
|
||||||
pred_list.append(i)
|
|
||||||
|
|
||||||
return pred_list
|
|
||||||
|
|
||||||
def predict_one(path):
|
|
||||||
|
|
||||||
#wyswietlanie obrazka po kazdym podniesieniu itemu
|
|
||||||
root = Tk()
|
|
||||||
root.title("Okno z obrazkiem")
|
|
||||||
|
|
||||||
image = Image.open(path)
|
|
||||||
photo = ImageTk.PhotoImage(image)
|
|
||||||
label = Label(root, image=photo)
|
|
||||||
label.pack()
|
|
||||||
|
|
||||||
root.mainloop()
|
|
||||||
|
|
||||||
#uruchamia sie funkcja spr czy obrazek to paczka czy list
|
|
||||||
pred_print = prediction(path,transformer)
|
|
||||||
print('Zdjecie jest: '+pred_print)
|
|
||||||
return pred_print
|
|
@ -1,61 +0,0 @@
|
|||||||
import torch.nn as nn
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
class DataModel(nn.Module):
|
|
||||||
def __init__(self, num_objects):
|
|
||||||
super(DataModel, self).__init__()
|
|
||||||
#input (batch=256, nr of channels rgb=3 , size=244x244)
|
|
||||||
|
|
||||||
# convolution
|
|
||||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
|
|
||||||
#shape (256, 12, 224x224)
|
|
||||||
|
|
||||||
# batch normalization
|
|
||||||
self.bn1 = nn.BatchNorm2d(num_features=12)
|
|
||||||
#shape (256, 12, 224x224)
|
|
||||||
self.reul1 = nn.ReLU()
|
|
||||||
|
|
||||||
self.pool=nn.MaxPool2d(kernel_size=2, stride=2)
|
|
||||||
# reduce image size by factor 2
|
|
||||||
# pooling window moves by 2 pixels at a time instead of 1
|
|
||||||
# shape (256, 12, 112x112)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
self.conv2 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=3, stride=1, padding=1)
|
|
||||||
self.bn2 = nn.BatchNorm2d(num_features=24)
|
|
||||||
self.reul2 = nn.ReLU()
|
|
||||||
# shape (256, 24, 112x112)
|
|
||||||
|
|
||||||
self.conv3 = nn.Conv2d(in_channels=24, out_channels=48, kernel_size=3, stride=1, padding=1)
|
|
||||||
#shape (256, 48, 112x112)
|
|
||||||
self.bn3 = nn.BatchNorm2d(num_features=48)
|
|
||||||
#shape (256, 48, 112x112)
|
|
||||||
self.reul3 = nn.ReLU()
|
|
||||||
|
|
||||||
# connected layer
|
|
||||||
self.fc = nn.Linear(in_features=48*112*112, out_features=num_objects)
|
|
||||||
|
|
||||||
def forward(self, input):
|
|
||||||
output = self.conv1(input)
|
|
||||||
output = self.bn1(output)
|
|
||||||
output = self.reul1(output)
|
|
||||||
|
|
||||||
output = self.pool(output)
|
|
||||||
output = self.conv2(output)
|
|
||||||
output = self.bn2(output)
|
|
||||||
output = self.reul2(output)
|
|
||||||
|
|
||||||
output = self.conv3(output)
|
|
||||||
output = self.bn3(output)
|
|
||||||
output = self.reul3(output)
|
|
||||||
|
|
||||||
# output shape matrix (256, 48, 112x112)
|
|
||||||
#print(output.shape)
|
|
||||||
#print(self.fc.weight.shape)
|
|
||||||
|
|
||||||
output = output.view(-1, 48*112*112)
|
|
||||||
output = self.fc(output)
|
|
||||||
|
|
||||||
return output
|
|
@ -1,31 +0,0 @@
|
|||||||
import glob
|
|
||||||
import pathlib
|
|
||||||
import torchvision.transforms as transforms
|
|
||||||
from torchvision.datasets import ImageFolder
|
|
||||||
from torch.utils.data import ConcatDataset
|
|
||||||
|
|
||||||
# images have to be the same size for the algorithm to work
|
|
||||||
transform = transforms.Compose([
|
|
||||||
transforms.Resize((224, 224)), # Resize images to (224, 224)
|
|
||||||
transforms.ToTensor(), # Convert images to tensors, 0-255 to 0-1
|
|
||||||
# transforms.RandomHorizontalFlip(), # 0.5 chance to flip the image
|
|
||||||
transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
|
|
||||||
])
|
|
||||||
|
|
||||||
letters_path = 'C:/Users/wojmed/Documents/VS repositories/Inteligentny_Wozek/NeuralNetwork/src/train_images/letters'
|
|
||||||
package_path = 'C:/Users/wojmed/Documents/VS repositories/Inteligentny_Wozek/NeuralNetwork/src/train_images/package'
|
|
||||||
images_path = 'C:/Users/wojmed/Documents/VS repositories/Inteligentny_Wozek/NeuralNetwork/src/train_images'
|
|
||||||
|
|
||||||
# # Load images from folders
|
|
||||||
# letter_folder = ImageFolder(letters_path, transform=transform)
|
|
||||||
# package_folder = ImageFolder(package_path, transform=transform)
|
|
||||||
|
|
||||||
# Combine the both datasets into a single dataset
|
|
||||||
#combined_dataset = ConcatDataset([letter_folder, package_folder])
|
|
||||||
combined_dataset = ImageFolder(images_path, transform=transform)
|
|
||||||
|
|
||||||
#image classes
|
|
||||||
path=pathlib.Path(images_path)
|
|
||||||
classes = sorted([i.name.split("/")[-1] for i in path.iterdir()])
|
|
||||||
|
|
||||||
# print(classes)
|
|
Before Width: | Height: | Size: 2.7 MiB |
Before Width: | Height: | Size: 1.8 MiB |
Before Width: | Height: | Size: 193 KiB |
Before Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 8.0 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 7.7 MiB |
Before Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 32 KiB |
Before Width: | Height: | Size: 135 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 76 KiB |
Before Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 6.6 MiB |
Before Width: | Height: | Size: 91 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 35 KiB |
Before Width: | Height: | Size: 85 KiB |
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 6.3 KiB |
Before Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 1.8 MiB |
Before Width: | Height: | Size: 99 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 1004 KiB |
Before Width: | Height: | Size: 976 B |
Before Width: | Height: | Size: 434 KiB |
Before Width: | Height: | Size: 131 KiB |
Before Width: | Height: | Size: 111 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 3.6 KiB |
Before Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 1.6 MiB |
Before Width: | Height: | Size: 5.9 KiB |
Before Width: | Height: | Size: 5.4 KiB |
Before Width: | Height: | Size: 4.2 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 6.7 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 555 KiB |
Before Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 51 KiB |
Before Width: | Height: | Size: 362 KiB |
Before Width: | Height: | Size: 1.6 MiB |
Before Width: | Height: | Size: 153 KiB |
Before Width: | Height: | Size: 108 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 3.7 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 150 KiB |
Before Width: | Height: | Size: 3.0 MiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 120 KiB |
Before Width: | Height: | Size: 3.7 KiB |
Before Width: | Height: | Size: 9.8 KiB |
Before Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 9.4 KiB |
Before Width: | Height: | Size: 7.5 KiB |
Before Width: | Height: | Size: 8.8 KiB |
Before Width: | Height: | Size: 88 KiB |
Before Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 96 KiB |
Before Width: | Height: | Size: 9.2 KiB |
Before Width: | Height: | Size: 55 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 27 KiB |