implementacja sieci neuronowych #28
147
NeuralNetwork/prediction.py
Normal file
147
NeuralNetwork/prediction.py
Normal file
@ -0,0 +1,147 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision.transforms import transforms
|
||||
import numpy as np
|
||||
from torch.autograd import Variable
|
||||
from torchvision.models import squeezenet1_1
|
||||
import torch.functional as F
|
||||
from io import open
|
||||
import os
|
||||
from PIL import Image
|
||||
import pathlib
|
||||
import glob
|
||||
from tkinter import Tk, Label
|
||||
from PIL import Image, ImageTk
|
||||
|
||||
absolute_path = os.path.abspath('NeuralNetwork/src/train_images')
|
||||
train_path = absolute_path
|
||||
absolute_path = os.path.abspath('Images/Items_test')
|
||||
pred_path = absolute_path
|
||||
|
||||
root=pathlib.Path(train_path)
|
||||
classes=sorted([j.name.split('/')[-1] for j in root.iterdir()])
|
||||
|
||||
|
||||
class DataModel(nn.Module):
|
||||
def __init__(self, num_classes):
|
||||
super(DataModel, self).__init__()
|
||||
#input (batch=256, nr of channels rgb=3 , size=244x244)
|
||||
|
||||
# convolution
|
||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
|
||||
#shape (256, 12, 224x224)
|
||||
|
||||
# batch normalization
|
||||
self.bn1 = nn.BatchNorm2d(num_features=12)
|
||||
#shape (256, 12, 224x224)
|
||||
self.reul1 = nn.ReLU()
|
||||
|
||||
self.pool=nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
# reduce image size by factor 2
|
||||
# pooling window moves by 2 pixels at a time instead of 1
|
||||
# shape (256, 12, 112x112)
|
||||
|
||||
|
||||
|
||||
self.conv2 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=3, stride=1, padding=1)
|
||||
self.bn2 = nn.BatchNorm2d(num_features=24)
|
||||
self.reul2 = nn.ReLU()
|
||||
# shape (256, 24, 112x112)
|
||||
|
||||
self.conv3 = nn.Conv2d(in_channels=24, out_channels=48, kernel_size=3, stride=1, padding=1)
|
||||
#shape (256, 48, 112x112)
|
||||
self.bn3 = nn.BatchNorm2d(num_features=48)
|
||||
#shape (256, 48, 112x112)
|
||||
self.reul3 = nn.ReLU()
|
||||
|
||||
# connected layer
|
||||
self.fc = nn.Linear(in_features=48*112*112, out_features=num_classes)
|
||||
|
||||
def forward(self, input):
|
||||
output = self.conv1(input)
|
||||
output = self.bn1(output)
|
||||
output = self.reul1(output)
|
||||
|
||||
output = self.pool(output)
|
||||
output = self.conv2(output)
|
||||
output = self.bn2(output)
|
||||
output = self.reul2(output)
|
||||
|
||||
output = self.conv3(output)
|
||||
output = self.bn3(output)
|
||||
output = self.reul3(output)
|
||||
|
||||
# output shape matrix (256, 48, 112x112)
|
||||
#print(output.shape)
|
||||
#print(self.fc.weight.shape)
|
||||
|
||||
output = output.view(-1, 48*112*112)
|
||||
output = self.fc(output)
|
||||
|
||||
return output
|
||||
|
||||
script_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
file_path = os.path.join(script_dir, 'best_model.pth')
|
||||
checkpoint=torch.load(file_path)
|
||||
model = DataModel(num_classes=2)
|
||||
model.load_state_dict(checkpoint)
|
||||
model.eval()
|
||||
|
||||
transformer = transforms.Compose([
|
||||
transforms.Resize((224, 224)), # Resize images to (224, 224)
|
||||
transforms.ToTensor(), # Convert images to tensors, 0-255 to 0-1
|
||||
# transforms.RandomHorizontalFlip(), # 0.5 chance to flip the image
|
||||
transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
|
||||
])
|
||||
|
||||
def prediction(img_path,transformer):
|
||||
|
||||
image=Image.open(img_path)
|
||||
|
||||
image_tensor=transformer(image).float()
|
||||
|
||||
image_tensor=image_tensor.unsqueeze_(0)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
image_tensor.cuda()
|
||||
|
||||
input=Variable(image_tensor)
|
||||
|
||||
output=model(input)
|
||||
|
||||
index=output.data.numpy().argmax()
|
||||
|
||||
pred=classes[index]
|
||||
|
||||
return pred
|
||||
|
||||
def prediction_keys():
|
||||
|
||||
#funkcja zwracajaca sciezki do kazdego pliku w folderze w postaci listy
|
||||
|
||||
images_path=glob.glob(pred_path+'/*.jpg')
|
||||
|
||||
pred_list=[]
|
||||
|
||||
for i in images_path:
|
||||
pred_list.append(i)
|
||||
|
||||
return pred_list
|
||||
|
||||
def predict_one(path):
|
||||
|
||||
#wyswietlanie obrazka po kazdym podniesieniu itemu
|
||||
root = Tk()
|
||||
root.title("Okno z obrazkiem")
|
||||
|
||||
image = Image.open(path)
|
||||
photo = ImageTk.PhotoImage(image)
|
||||
label = Label(root, image=photo)
|
||||
label.pack()
|
||||
|
||||
root.mainloop()
|
||||
|
||||
#uruchamia sie funkcja spr czy obrazek to paczka czy list
|
||||
pred_print = prediction(path,transformer)
|
||||
print('Zdjecie jest: '+pred_print)
|
||||
return pred_print
|
BIN
images/Items_test/test1.jpg
Normal file
BIN
images/Items_test/test1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
BIN
images/Items_test/test2.jpg
Normal file
BIN
images/Items_test/test2.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 57 KiB |
BIN
images/Items_test/test3.jpg
Normal file
BIN
images/Items_test/test3.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
BIN
images/Items_test/test4.jpg
Normal file
BIN
images/Items_test/test4.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 60 KiB |
@ -3,9 +3,9 @@ import pygame
|
||||
letter_pic = pygame.image.load("images/letter.png")
|
||||
|
||||
class Letter(pygame.sprite.Sprite):
|
||||
def __init__(self, id):
|
||||
def __init__(self, img_path):
|
||||
super().__init__()
|
||||
self.id = id
|
||||
self.img_path = img_path
|
||||
self.image = pygame.transform.scale(letter_pic, (40, 40))
|
||||
self.rect = self.image.get_rect()
|
||||
self.x = 430
|
||||
|
12
main.py
12
main.py
@ -9,6 +9,7 @@ import wyszukiwanie
|
||||
import ekran
|
||||
from grid import GridCellType, SearchGrid
|
||||
import plansza
|
||||
import NeuralNetwork.prediction as prediction
|
||||
|
||||
|
||||
from plansza import a_pix, b_pix
|
||||
@ -17,10 +18,11 @@ pygame.init()
|
||||
|
||||
def main():
|
||||
wozek = Wozek()
|
||||
p1 = Paczka('duzy', 12, 'narzedzia', False, True, False, any, any, any, any, any)
|
||||
p2 = Paczka('maly', 1, 'ogród', False, True, False, any, any, any, any, any)
|
||||
l1 = Letter(1)
|
||||
l2 = Letter(2)
|
||||
pred_list = prediction.prediction_keys()
|
||||
p1 = Paczka('duzy', 12, 'narzedzia', False, True, False, any, any, any, any, any, pred_list[3])
|
||||
p2 = Paczka('maly', 1, 'ogród', False, True, False, any, any, any, any, any, pred_list[1])
|
||||
l1 = Letter(pred_list[0])
|
||||
l2 = Letter(pred_list[2])
|
||||
ekran.dodaj_na_rampe(p2, l1, p1, l2)
|
||||
grid_points = SearchGrid()
|
||||
|
||||
@ -54,7 +56,7 @@ def main():
|
||||
wozek.dynamic_wozek_picture()
|
||||
|
||||
przenoszony_item = wozek.storage[-1]
|
||||
if isinstance(przenoszony_item,Paczka):
|
||||
if (prediction.predict_one(przenoszony_item.img_path)=='package'):
|
||||
## wozek jedzie odlozyc paczke na regal
|
||||
przenoszona_paczka = przenoszony_item
|
||||
|
||||
|
@ -4,7 +4,7 @@ import ekran
|
||||
|
||||
|
||||
class Paczka(pygame.sprite.Sprite):
|
||||
def __init__(self, rozmiar, waga, kategoria, priorytet, ksztalt, kruchosc, nadawca, adres, imie, nazwisko, telefon):
|
||||
def __init__(self, rozmiar, waga, kategoria, priorytet, ksztalt, kruchosc, nadawca, adres, imie, nazwisko, telefon, img_path):
|
||||
super().__init__()
|
||||
self.rozmiar = rozmiar
|
||||
self.image = pygame.image.load("images/paczka.png")
|
||||
@ -31,6 +31,7 @@ class Paczka(pygame.sprite.Sprite):
|
||||
self.priorytet = priorytet
|
||||
self.ksztalt = ksztalt
|
||||
self.kruchosc = kruchosc
|
||||
self.img_path = img_path
|
||||
self.x = 430
|
||||
self.y = 400
|
||||
self.label = Etykieta(nadawca, adres, imie, nazwisko, telefon, priorytet)
|
||||
|
Loading…
Reference in New Issue
Block a user