Traktor/myenv/Lib/site-packages/torchvision/models/quantization/googlenet.py

211 lines
7.9 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
import warnings
from functools import partial
from typing import Any, Optional, Union
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from ...transforms._presets import ImageClassification
from .._api import register_model, Weights, WeightsEnum
from .._meta import _IMAGENET_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from ..googlenet import BasicConv2d, GoogLeNet, GoogLeNet_Weights, GoogLeNetOutputs, Inception, InceptionAux
from .utils import _fuse_modules, _replace_relu, quantize_model
__all__ = [
"QuantizableGoogLeNet",
"GoogLeNet_QuantizedWeights",
"googlenet",
]
class QuantizableBasicConv2d(BasicConv2d):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
_fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True)
class QuantizableInception(Inception):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
self.cat = nn.quantized.FloatFunctional()
def forward(self, x: Tensor) -> Tensor:
outputs = self._forward(x)
return self.cat.cat(outputs, 1)
class QuantizableInceptionAux(InceptionAux):
# TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = F.adaptive_avg_pool2d(x, (4, 4))
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = torch.flatten(x, 1)
# N x 2048
x = self.relu(self.fc1(x))
# N x 1024
x = self.dropout(x)
# N x 1024
x = self.fc2(x)
# N x 1000 (num_classes)
return x
class QuantizableGoogLeNet(GoogLeNet):
# TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__( # type: ignore[misc]
*args, blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], **kwargs
)
self.quant = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x: Tensor) -> GoogLeNetOutputs:
x = self._transform_input(x)
x = self.quant(x)
x, aux1, aux2 = self._forward(x)
x = self.dequant(x)
aux_defined = self.training and self.aux_logits
if torch.jit.is_scripting():
if not aux_defined:
warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple")
return GoogLeNetOutputs(x, aux2, aux1)
else:
return self.eager_outputs(x, aux2, aux1)
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
r"""Fuse conv/bn/relu modules in googlenet model
Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
Model is modified in place. Note that this operation does not change numerics
and the model after modification is in floating point
"""
for m in self.modules():
if type(m) is QuantizableBasicConv2d:
m.fuse_model(is_qat)
class GoogLeNet_QuantizedWeights(WeightsEnum):
IMAGENET1K_FBGEMM_V1 = Weights(
url="https://download.pytorch.org/models/quantized/googlenet_fbgemm-c81f6644.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
"num_params": 6624904,
"min_size": (15, 15),
"categories": _IMAGENET_CATEGORIES,
"backend": "fbgemm",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
"unquantized": GoogLeNet_Weights.IMAGENET1K_V1,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.826,
"acc@5": 89.404,
}
},
"_ops": 1.498,
"_file_size": 12.618,
"_docs": """
These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
weights listed below.
""",
},
)
DEFAULT = IMAGENET1K_FBGEMM_V1
@register_model(name="quantized_googlenet")
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1
if kwargs.get("quantize", False)
else GoogLeNet_Weights.IMAGENET1K_V1,
)
)
def googlenet(
*,
weights: Optional[Union[GoogLeNet_QuantizedWeights, GoogLeNet_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableGoogLeNet:
"""GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`__.
.. note::
Note that ``quantize = True`` returns a quantized model with 8 bit
weights. Quantized models only support inference and run on CPUs.
GPU inference is not yet supported.
Args:
weights (:class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` or :class:`~torchvision.models.GoogLeNet_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
quantize (bool, optional): If True, return a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableGoogLeNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/googlenet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.GoogLeNet_QuantizedWeights
:members:
.. autoclass:: torchvision.models.GoogLeNet_Weights
:members:
:noindex:
"""
weights = (GoogLeNet_QuantizedWeights if quantize else GoogLeNet_Weights).verify(weights)
original_aux_logits = kwargs.get("aux_logits", False)
if weights is not None:
if "transform_input" not in kwargs:
_ovewrite_named_param(kwargs, "transform_input", True)
_ovewrite_named_param(kwargs, "aux_logits", True)
_ovewrite_named_param(kwargs, "init_weights", False)
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
if "backend" in weights.meta:
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
backend = kwargs.pop("backend", "fbgemm")
model = QuantizableGoogLeNet(**kwargs)
_replace_relu(model)
if quantize:
quantize_model(model, backend)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
if not original_aux_logits:
model.aux_logits = False
model.aux1 = None # type: ignore[assignment]
model.aux2 = None # type: ignore[assignment]
else:
warnings.warn(
"auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
)
return model