Traktor/myenv/Lib/site-packages/sklearn/cluster/tests/test_dbscan.py

435 lines
15 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""
Tests for DBSCAN clustering algorithm
"""
import pickle
import warnings
import numpy as np
import pytest
from scipy.spatial import distance
from sklearn.cluster import DBSCAN, dbscan
from sklearn.cluster.tests.common import generate_clustered_data
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.neighbors import NearestNeighbors
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.fixes import CSR_CONTAINERS, LIL_CONTAINERS
n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)
def test_dbscan_similarity():
# Tests the DBSCAN algorithm with a similarity array.
# Parameters chosen specifically for this task.
eps = 0.15
min_samples = 10
# Compute similarities
D = distance.squareform(distance.pdist(X))
D /= np.max(D)
# Compute DBSCAN
core_samples, labels = dbscan(
D, metric="precomputed", eps=eps, min_samples=min_samples
)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0)
assert n_clusters_1 == n_clusters
db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples)
labels = db.fit(D).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
def test_dbscan_feature():
# Tests the DBSCAN algorithm with a feature vector array.
# Parameters chosen specifically for this task.
# Different eps to other test, because distance is not normalised.
eps = 0.8
min_samples = 10
metric = "euclidean"
# Compute DBSCAN
# parameters chosen for task
core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert n_clusters_1 == n_clusters
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples)
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_dbscan_sparse(lil_container):
core_sparse, labels_sparse = dbscan(lil_container(X), eps=0.8, min_samples=10)
core_dense, labels_dense = dbscan(X, eps=0.8, min_samples=10)
assert_array_equal(core_dense, core_sparse)
assert_array_equal(labels_dense, labels_sparse)
@pytest.mark.parametrize("include_self", [False, True])
def test_dbscan_sparse_precomputed(include_self):
D = pairwise_distances(X)
nn = NearestNeighbors(radius=0.9).fit(X)
X_ = X if include_self else None
D_sparse = nn.radius_neighbors_graph(X=X_, mode="distance")
# Ensure it is sparse not merely on diagonals:
assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1)
core_sparse, labels_sparse = dbscan(
D_sparse, eps=0.8, min_samples=10, metric="precomputed"
)
core_dense, labels_dense = dbscan(D, eps=0.8, min_samples=10, metric="precomputed")
assert_array_equal(core_dense, core_sparse)
assert_array_equal(labels_dense, labels_sparse)
def test_dbscan_sparse_precomputed_different_eps():
# test that precomputed neighbors graph is filtered if computed with
# a radius larger than DBSCAN's eps.
lower_eps = 0.2
nn = NearestNeighbors(radius=lower_eps).fit(X)
D_sparse = nn.radius_neighbors_graph(X, mode="distance")
dbscan_lower = dbscan(D_sparse, eps=lower_eps, metric="precomputed")
higher_eps = lower_eps + 0.7
nn = NearestNeighbors(radius=higher_eps).fit(X)
D_sparse = nn.radius_neighbors_graph(X, mode="distance")
dbscan_higher = dbscan(D_sparse, eps=lower_eps, metric="precomputed")
assert_array_equal(dbscan_lower[0], dbscan_higher[0])
assert_array_equal(dbscan_lower[1], dbscan_higher[1])
@pytest.mark.parametrize("metric", ["precomputed", "minkowski"])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS + [None])
def test_dbscan_input_not_modified(metric, csr_container):
# test that the input is not modified by dbscan
X = np.random.RandomState(0).rand(10, 10)
X = csr_container(X) if csr_container is not None else X
X_copy = X.copy()
dbscan(X, metric=metric)
if csr_container is not None:
assert_array_equal(X.toarray(), X_copy.toarray())
else:
assert_array_equal(X, X_copy)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dbscan_input_not_modified_precomputed_sparse_nodiag(csr_container):
"""Check that we don't modify in-place the pre-computed sparse matrix.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/27508
"""
X = np.random.RandomState(0).rand(10, 10)
# Add zeros on the diagonal that will be implicit when creating
# the sparse matrix. If `X` is modified in-place, the zeros from
# the diagonal will be made explicit.
np.fill_diagonal(X, 0)
X = csr_container(X)
assert all(row != col for row, col in zip(*X.nonzero()))
X_copy = X.copy()
dbscan(X, metric="precomputed")
# Make sure that we did not modify `X` in-place even by creating
# explicit 0s values.
assert X.nnz == X_copy.nnz
assert_array_equal(X.toarray(), X_copy.toarray())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dbscan_no_core_samples(csr_container):
rng = np.random.RandomState(0)
X = rng.rand(40, 10)
X[X < 0.8] = 0
for X_ in [X, csr_container(X)]:
db = DBSCAN(min_samples=6).fit(X_)
assert_array_equal(db.components_, np.empty((0, X_.shape[1])))
assert_array_equal(db.labels_, -1)
assert db.core_sample_indices_.shape == (0,)
def test_dbscan_callable():
# Tests the DBSCAN algorithm with a callable metric.
# Parameters chosen specifically for this task.
# Different eps to other test, because distance is not normalised.
eps = 0.8
min_samples = 10
# metric is the function reference, not the string key.
metric = distance.euclidean
# Compute DBSCAN
# parameters chosen for task
core_samples, labels = dbscan(
X, metric=metric, eps=eps, min_samples=min_samples, algorithm="ball_tree"
)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert n_clusters_1 == n_clusters
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
def test_dbscan_metric_params():
# Tests that DBSCAN works with the metrics_params argument.
eps = 0.8
min_samples = 10
p = 1
# Compute DBSCAN with metric_params arg
with warnings.catch_warnings(record=True) as warns:
db = DBSCAN(
metric="minkowski",
metric_params={"p": p},
eps=eps,
p=None,
min_samples=min_samples,
algorithm="ball_tree",
).fit(X)
assert not warns, warns[0].message
core_sample_1, labels_1 = db.core_sample_indices_, db.labels_
# Test that sample labels are the same as passing Minkowski 'p' directly
db = DBSCAN(
metric="minkowski", eps=eps, min_samples=min_samples, algorithm="ball_tree", p=p
).fit(X)
core_sample_2, labels_2 = db.core_sample_indices_, db.labels_
assert_array_equal(core_sample_1, core_sample_2)
assert_array_equal(labels_1, labels_2)
# Minkowski with p=1 should be equivalent to Manhattan distance
db = DBSCAN(
metric="manhattan", eps=eps, min_samples=min_samples, algorithm="ball_tree"
).fit(X)
core_sample_3, labels_3 = db.core_sample_indices_, db.labels_
assert_array_equal(core_sample_1, core_sample_3)
assert_array_equal(labels_1, labels_3)
with pytest.warns(
SyntaxWarning,
match=(
"Parameter p is found in metric_params. "
"The corresponding parameter from __init__ "
"is ignored."
),
):
# Test that checks p is ignored in favor of metric_params={'p': <val>}
db = DBSCAN(
metric="minkowski",
metric_params={"p": p},
eps=eps,
p=p + 1,
min_samples=min_samples,
algorithm="ball_tree",
).fit(X)
core_sample_4, labels_4 = db.core_sample_indices_, db.labels_
assert_array_equal(core_sample_1, core_sample_4)
assert_array_equal(labels_1, labels_4)
def test_dbscan_balltree():
# Tests the DBSCAN algorithm with balltree for neighbor calculation.
eps = 0.8
min_samples = 10
D = pairwise_distances(X)
core_samples, labels = dbscan(
D, metric="precomputed", eps=eps, min_samples=min_samples
)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert n_clusters_1 == n_clusters
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm="kd_tree")
labels = db.fit(X).labels_
n_clusters_3 = len(set(labels)) - int(-1 in labels)
assert n_clusters_3 == n_clusters
db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_4 = len(set(labels)) - int(-1 in labels)
assert n_clusters_4 == n_clusters
db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_5 = len(set(labels)) - int(-1 in labels)
assert n_clusters_5 == n_clusters
def test_input_validation():
# DBSCAN.fit should accept a list of lists.
X = [[1.0, 2.0], [3.0, 4.0]]
DBSCAN().fit(X) # must not raise exception
def test_pickle():
obj = DBSCAN()
s = pickle.dumps(obj)
assert type(pickle.loads(s)) == obj.__class__
def test_boundaries():
# ensure min_samples is inclusive of core point
core, _ = dbscan([[0], [1]], eps=2, min_samples=2)
assert 0 in core
# ensure eps is inclusive of circumference
core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2)
assert 0 in core
core, _ = dbscan([[0], [1], [1]], eps=0.99, min_samples=2)
assert 0 not in core
def test_weighted_dbscan(global_random_seed):
# ensure sample_weight is validated
with pytest.raises(ValueError):
dbscan([[0], [1]], sample_weight=[2])
with pytest.raises(ValueError):
dbscan([[0], [1]], sample_weight=[2, 3, 4])
# ensure sample_weight has an effect
assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0])
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0])
assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0])
assert_array_equal(
[0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]
)
# points within eps of each other:
assert_array_equal(
[0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]
)
# and effect of non-positive and non-integer sample_weight:
assert_array_equal(
[], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]
)
assert_array_equal(
[0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]
)
assert_array_equal(
[0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]
)
assert_array_equal(
[], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]
)
# for non-negative sample_weight, cores should be identical to repetition
rng = np.random.RandomState(global_random_seed)
sample_weight = rng.randint(0, 5, X.shape[0])
core1, label1 = dbscan(X, sample_weight=sample_weight)
assert len(label1) == len(X)
X_repeated = np.repeat(X, sample_weight, axis=0)
core_repeated, label_repeated = dbscan(X_repeated)
core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
core_repeated_mask[core_repeated] = True
core_mask = np.zeros(X.shape[0], dtype=bool)
core_mask[core1] = True
assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)
# sample_weight should work with precomputed distance matrix
D = pairwise_distances(X)
core3, label3 = dbscan(D, sample_weight=sample_weight, metric="precomputed")
assert_array_equal(core1, core3)
assert_array_equal(label1, label3)
# sample_weight should work with estimator
est = DBSCAN().fit(X, sample_weight=sample_weight)
core4 = est.core_sample_indices_
label4 = est.labels_
assert_array_equal(core1, core4)
assert_array_equal(label1, label4)
est = DBSCAN()
label5 = est.fit_predict(X, sample_weight=sample_weight)
core5 = est.core_sample_indices_
assert_array_equal(core1, core5)
assert_array_equal(label1, label5)
assert_array_equal(label1, est.labels_)
@pytest.mark.parametrize("algorithm", ["brute", "kd_tree", "ball_tree"])
def test_dbscan_core_samples_toy(algorithm):
X = [[0], [2], [3], [4], [6], [8], [10]]
n_samples = len(X)
# Degenerate case: every sample is a core sample, either with its own
# cluster or including other close core samples.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1)
assert_array_equal(core_samples, np.arange(n_samples))
assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4])
# With eps=1 and min_samples=2 only the 3 samples from the denser area
# are core samples. All other points are isolated and considered noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2)
assert_array_equal(core_samples, [1, 2, 3])
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
# Only the sample in the middle of the dense area is core. Its two
# neighbors are edge samples. Remaining samples are noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3)
assert_array_equal(core_samples, [2])
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
# It's no longer possible to extract core samples with eps=1:
# everything is noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4)
assert_array_equal(core_samples, [])
assert_array_equal(labels, np.full(n_samples, -1.0))
def test_dbscan_precomputed_metric_with_degenerate_input_arrays():
# see https://github.com/scikit-learn/scikit-learn/issues/4641 for
# more details
X = np.eye(10)
labels = DBSCAN(eps=0.5, metric="precomputed").fit(X).labels_
assert len(set(labels)) == 1
X = np.zeros((10, 10))
labels = DBSCAN(eps=0.5, metric="precomputed").fit(X).labels_
assert len(set(labels)) == 1
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dbscan_precomputed_metric_with_initial_rows_zero(csr_container):
# sample matrix with initial two row all zero
ar = np.array(
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
[0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.3],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1],
[0.0, 0.0, 0.0, 0.0, 0.3, 0.1, 0.0],
]
)
matrix = csr_container(ar)
labels = DBSCAN(eps=0.2, metric="precomputed", min_samples=2).fit(matrix).labels_
assert_array_equal(labels, [-1, -1, 0, 0, 0, 1, 1])