Traktor/myenv/Lib/site-packages/sklearn/cluster/tests/test_dbscan.py
2024-05-26 05:12:46 +02:00

435 lines
15 KiB
Python

"""
Tests for DBSCAN clustering algorithm
"""
import pickle
import warnings
import numpy as np
import pytest
from scipy.spatial import distance
from sklearn.cluster import DBSCAN, dbscan
from sklearn.cluster.tests.common import generate_clustered_data
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.neighbors import NearestNeighbors
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.fixes import CSR_CONTAINERS, LIL_CONTAINERS
n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)
def test_dbscan_similarity():
# Tests the DBSCAN algorithm with a similarity array.
# Parameters chosen specifically for this task.
eps = 0.15
min_samples = 10
# Compute similarities
D = distance.squareform(distance.pdist(X))
D /= np.max(D)
# Compute DBSCAN
core_samples, labels = dbscan(
D, metric="precomputed", eps=eps, min_samples=min_samples
)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0)
assert n_clusters_1 == n_clusters
db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples)
labels = db.fit(D).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
def test_dbscan_feature():
# Tests the DBSCAN algorithm with a feature vector array.
# Parameters chosen specifically for this task.
# Different eps to other test, because distance is not normalised.
eps = 0.8
min_samples = 10
metric = "euclidean"
# Compute DBSCAN
# parameters chosen for task
core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert n_clusters_1 == n_clusters
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples)
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_dbscan_sparse(lil_container):
core_sparse, labels_sparse = dbscan(lil_container(X), eps=0.8, min_samples=10)
core_dense, labels_dense = dbscan(X, eps=0.8, min_samples=10)
assert_array_equal(core_dense, core_sparse)
assert_array_equal(labels_dense, labels_sparse)
@pytest.mark.parametrize("include_self", [False, True])
def test_dbscan_sparse_precomputed(include_self):
D = pairwise_distances(X)
nn = NearestNeighbors(radius=0.9).fit(X)
X_ = X if include_self else None
D_sparse = nn.radius_neighbors_graph(X=X_, mode="distance")
# Ensure it is sparse not merely on diagonals:
assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1)
core_sparse, labels_sparse = dbscan(
D_sparse, eps=0.8, min_samples=10, metric="precomputed"
)
core_dense, labels_dense = dbscan(D, eps=0.8, min_samples=10, metric="precomputed")
assert_array_equal(core_dense, core_sparse)
assert_array_equal(labels_dense, labels_sparse)
def test_dbscan_sparse_precomputed_different_eps():
# test that precomputed neighbors graph is filtered if computed with
# a radius larger than DBSCAN's eps.
lower_eps = 0.2
nn = NearestNeighbors(radius=lower_eps).fit(X)
D_sparse = nn.radius_neighbors_graph(X, mode="distance")
dbscan_lower = dbscan(D_sparse, eps=lower_eps, metric="precomputed")
higher_eps = lower_eps + 0.7
nn = NearestNeighbors(radius=higher_eps).fit(X)
D_sparse = nn.radius_neighbors_graph(X, mode="distance")
dbscan_higher = dbscan(D_sparse, eps=lower_eps, metric="precomputed")
assert_array_equal(dbscan_lower[0], dbscan_higher[0])
assert_array_equal(dbscan_lower[1], dbscan_higher[1])
@pytest.mark.parametrize("metric", ["precomputed", "minkowski"])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS + [None])
def test_dbscan_input_not_modified(metric, csr_container):
# test that the input is not modified by dbscan
X = np.random.RandomState(0).rand(10, 10)
X = csr_container(X) if csr_container is not None else X
X_copy = X.copy()
dbscan(X, metric=metric)
if csr_container is not None:
assert_array_equal(X.toarray(), X_copy.toarray())
else:
assert_array_equal(X, X_copy)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dbscan_input_not_modified_precomputed_sparse_nodiag(csr_container):
"""Check that we don't modify in-place the pre-computed sparse matrix.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/27508
"""
X = np.random.RandomState(0).rand(10, 10)
# Add zeros on the diagonal that will be implicit when creating
# the sparse matrix. If `X` is modified in-place, the zeros from
# the diagonal will be made explicit.
np.fill_diagonal(X, 0)
X = csr_container(X)
assert all(row != col for row, col in zip(*X.nonzero()))
X_copy = X.copy()
dbscan(X, metric="precomputed")
# Make sure that we did not modify `X` in-place even by creating
# explicit 0s values.
assert X.nnz == X_copy.nnz
assert_array_equal(X.toarray(), X_copy.toarray())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dbscan_no_core_samples(csr_container):
rng = np.random.RandomState(0)
X = rng.rand(40, 10)
X[X < 0.8] = 0
for X_ in [X, csr_container(X)]:
db = DBSCAN(min_samples=6).fit(X_)
assert_array_equal(db.components_, np.empty((0, X_.shape[1])))
assert_array_equal(db.labels_, -1)
assert db.core_sample_indices_.shape == (0,)
def test_dbscan_callable():
# Tests the DBSCAN algorithm with a callable metric.
# Parameters chosen specifically for this task.
# Different eps to other test, because distance is not normalised.
eps = 0.8
min_samples = 10
# metric is the function reference, not the string key.
metric = distance.euclidean
# Compute DBSCAN
# parameters chosen for task
core_samples, labels = dbscan(
X, metric=metric, eps=eps, min_samples=min_samples, algorithm="ball_tree"
)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert n_clusters_1 == n_clusters
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
def test_dbscan_metric_params():
# Tests that DBSCAN works with the metrics_params argument.
eps = 0.8
min_samples = 10
p = 1
# Compute DBSCAN with metric_params arg
with warnings.catch_warnings(record=True) as warns:
db = DBSCAN(
metric="minkowski",
metric_params={"p": p},
eps=eps,
p=None,
min_samples=min_samples,
algorithm="ball_tree",
).fit(X)
assert not warns, warns[0].message
core_sample_1, labels_1 = db.core_sample_indices_, db.labels_
# Test that sample labels are the same as passing Minkowski 'p' directly
db = DBSCAN(
metric="minkowski", eps=eps, min_samples=min_samples, algorithm="ball_tree", p=p
).fit(X)
core_sample_2, labels_2 = db.core_sample_indices_, db.labels_
assert_array_equal(core_sample_1, core_sample_2)
assert_array_equal(labels_1, labels_2)
# Minkowski with p=1 should be equivalent to Manhattan distance
db = DBSCAN(
metric="manhattan", eps=eps, min_samples=min_samples, algorithm="ball_tree"
).fit(X)
core_sample_3, labels_3 = db.core_sample_indices_, db.labels_
assert_array_equal(core_sample_1, core_sample_3)
assert_array_equal(labels_1, labels_3)
with pytest.warns(
SyntaxWarning,
match=(
"Parameter p is found in metric_params. "
"The corresponding parameter from __init__ "
"is ignored."
),
):
# Test that checks p is ignored in favor of metric_params={'p': <val>}
db = DBSCAN(
metric="minkowski",
metric_params={"p": p},
eps=eps,
p=p + 1,
min_samples=min_samples,
algorithm="ball_tree",
).fit(X)
core_sample_4, labels_4 = db.core_sample_indices_, db.labels_
assert_array_equal(core_sample_1, core_sample_4)
assert_array_equal(labels_1, labels_4)
def test_dbscan_balltree():
# Tests the DBSCAN algorithm with balltree for neighbor calculation.
eps = 0.8
min_samples = 10
D = pairwise_distances(X)
core_samples, labels = dbscan(
D, metric="precomputed", eps=eps, min_samples=min_samples
)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert n_clusters_1 == n_clusters
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert n_clusters_2 == n_clusters
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm="kd_tree")
labels = db.fit(X).labels_
n_clusters_3 = len(set(labels)) - int(-1 in labels)
assert n_clusters_3 == n_clusters
db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_4 = len(set(labels)) - int(-1 in labels)
assert n_clusters_4 == n_clusters
db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm="ball_tree")
labels = db.fit(X).labels_
n_clusters_5 = len(set(labels)) - int(-1 in labels)
assert n_clusters_5 == n_clusters
def test_input_validation():
# DBSCAN.fit should accept a list of lists.
X = [[1.0, 2.0], [3.0, 4.0]]
DBSCAN().fit(X) # must not raise exception
def test_pickle():
obj = DBSCAN()
s = pickle.dumps(obj)
assert type(pickle.loads(s)) == obj.__class__
def test_boundaries():
# ensure min_samples is inclusive of core point
core, _ = dbscan([[0], [1]], eps=2, min_samples=2)
assert 0 in core
# ensure eps is inclusive of circumference
core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2)
assert 0 in core
core, _ = dbscan([[0], [1], [1]], eps=0.99, min_samples=2)
assert 0 not in core
def test_weighted_dbscan(global_random_seed):
# ensure sample_weight is validated
with pytest.raises(ValueError):
dbscan([[0], [1]], sample_weight=[2])
with pytest.raises(ValueError):
dbscan([[0], [1]], sample_weight=[2, 3, 4])
# ensure sample_weight has an effect
assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0])
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0])
assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0])
assert_array_equal(
[0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]
)
# points within eps of each other:
assert_array_equal(
[0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]
)
# and effect of non-positive and non-integer sample_weight:
assert_array_equal(
[], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]
)
assert_array_equal(
[0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]
)
assert_array_equal(
[0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]
)
assert_array_equal(
[], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]
)
# for non-negative sample_weight, cores should be identical to repetition
rng = np.random.RandomState(global_random_seed)
sample_weight = rng.randint(0, 5, X.shape[0])
core1, label1 = dbscan(X, sample_weight=sample_weight)
assert len(label1) == len(X)
X_repeated = np.repeat(X, sample_weight, axis=0)
core_repeated, label_repeated = dbscan(X_repeated)
core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
core_repeated_mask[core_repeated] = True
core_mask = np.zeros(X.shape[0], dtype=bool)
core_mask[core1] = True
assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)
# sample_weight should work with precomputed distance matrix
D = pairwise_distances(X)
core3, label3 = dbscan(D, sample_weight=sample_weight, metric="precomputed")
assert_array_equal(core1, core3)
assert_array_equal(label1, label3)
# sample_weight should work with estimator
est = DBSCAN().fit(X, sample_weight=sample_weight)
core4 = est.core_sample_indices_
label4 = est.labels_
assert_array_equal(core1, core4)
assert_array_equal(label1, label4)
est = DBSCAN()
label5 = est.fit_predict(X, sample_weight=sample_weight)
core5 = est.core_sample_indices_
assert_array_equal(core1, core5)
assert_array_equal(label1, label5)
assert_array_equal(label1, est.labels_)
@pytest.mark.parametrize("algorithm", ["brute", "kd_tree", "ball_tree"])
def test_dbscan_core_samples_toy(algorithm):
X = [[0], [2], [3], [4], [6], [8], [10]]
n_samples = len(X)
# Degenerate case: every sample is a core sample, either with its own
# cluster or including other close core samples.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1)
assert_array_equal(core_samples, np.arange(n_samples))
assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4])
# With eps=1 and min_samples=2 only the 3 samples from the denser area
# are core samples. All other points are isolated and considered noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2)
assert_array_equal(core_samples, [1, 2, 3])
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
# Only the sample in the middle of the dense area is core. Its two
# neighbors are edge samples. Remaining samples are noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3)
assert_array_equal(core_samples, [2])
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
# It's no longer possible to extract core samples with eps=1:
# everything is noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4)
assert_array_equal(core_samples, [])
assert_array_equal(labels, np.full(n_samples, -1.0))
def test_dbscan_precomputed_metric_with_degenerate_input_arrays():
# see https://github.com/scikit-learn/scikit-learn/issues/4641 for
# more details
X = np.eye(10)
labels = DBSCAN(eps=0.5, metric="precomputed").fit(X).labels_
assert len(set(labels)) == 1
X = np.zeros((10, 10))
labels = DBSCAN(eps=0.5, metric="precomputed").fit(X).labels_
assert len(set(labels)) == 1
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dbscan_precomputed_metric_with_initial_rows_zero(csr_container):
# sample matrix with initial two row all zero
ar = np.array(
[
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
[0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.3],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1],
[0.0, 0.0, 0.0, 0.0, 0.3, 0.1, 0.0],
]
)
matrix = csr_container(ar)
labels = DBSCAN(eps=0.2, metric="precomputed", min_samples=2).fit(matrix).labels_
assert_array_equal(labels, [-1, -1, 0, 0, 0, 1, 1])