636 lines
22 KiB
Python
636 lines
22 KiB
Python
|
import numbers
|
||
|
import sys
|
||
|
import warnings
|
||
|
from collections import UserList
|
||
|
from itertools import compress, islice
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.sparse import issparse
|
||
|
|
||
|
from ._array_api import _is_numpy_namespace, get_namespace
|
||
|
from ._param_validation import Interval, validate_params
|
||
|
from .extmath import _approximate_mode
|
||
|
from .validation import (
|
||
|
_is_arraylike_not_scalar,
|
||
|
_is_pandas_df,
|
||
|
_is_polars_df_or_series,
|
||
|
_use_interchange_protocol,
|
||
|
check_array,
|
||
|
check_consistent_length,
|
||
|
check_random_state,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _array_indexing(array, key, key_dtype, axis):
|
||
|
"""Index an array or scipy.sparse consistently across NumPy version."""
|
||
|
xp, is_array_api = get_namespace(array)
|
||
|
if is_array_api:
|
||
|
return xp.take(array, key, axis=axis)
|
||
|
if issparse(array) and key_dtype == "bool":
|
||
|
key = np.asarray(key)
|
||
|
if isinstance(key, tuple):
|
||
|
key = list(key)
|
||
|
return array[key, ...] if axis == 0 else array[:, key]
|
||
|
|
||
|
|
||
|
def _pandas_indexing(X, key, key_dtype, axis):
|
||
|
"""Index a pandas dataframe or a series."""
|
||
|
if _is_arraylike_not_scalar(key):
|
||
|
key = np.asarray(key)
|
||
|
|
||
|
if key_dtype == "int" and not (isinstance(key, slice) or np.isscalar(key)):
|
||
|
# using take() instead of iloc[] ensures the return value is a "proper"
|
||
|
# copy that will not raise SettingWithCopyWarning
|
||
|
return X.take(key, axis=axis)
|
||
|
else:
|
||
|
# check whether we should index with loc or iloc
|
||
|
indexer = X.iloc if key_dtype == "int" else X.loc
|
||
|
return indexer[:, key] if axis else indexer[key]
|
||
|
|
||
|
|
||
|
def _list_indexing(X, key, key_dtype):
|
||
|
"""Index a Python list."""
|
||
|
if np.isscalar(key) or isinstance(key, slice):
|
||
|
# key is a slice or a scalar
|
||
|
return X[key]
|
||
|
if key_dtype == "bool":
|
||
|
# key is a boolean array-like
|
||
|
return list(compress(X, key))
|
||
|
# key is a integer array-like of key
|
||
|
return [X[idx] for idx in key]
|
||
|
|
||
|
|
||
|
def _polars_indexing(X, key, key_dtype, axis):
|
||
|
"""Indexing X with polars interchange protocol."""
|
||
|
# Polars behavior is more consistent with lists
|
||
|
if isinstance(key, np.ndarray):
|
||
|
# Convert each element of the array to a Python scalar
|
||
|
key = key.tolist()
|
||
|
elif not (np.isscalar(key) or isinstance(key, slice)):
|
||
|
key = list(key)
|
||
|
|
||
|
if axis == 1:
|
||
|
# Here we are certain to have a polars DataFrame; which can be indexed with
|
||
|
# integer and string scalar, and list of integer, string and boolean
|
||
|
return X[:, key]
|
||
|
|
||
|
if key_dtype == "bool":
|
||
|
# Boolean mask can be indexed in the same way for Series and DataFrame (axis=0)
|
||
|
return X.filter(key)
|
||
|
|
||
|
# Integer scalar and list of integer can be indexed in the same way for Series and
|
||
|
# DataFrame (axis=0)
|
||
|
X_indexed = X[key]
|
||
|
if np.isscalar(key) and len(X.shape) == 2:
|
||
|
# `X_indexed` is a DataFrame with a single row; we return a Series to be
|
||
|
# consistent with pandas
|
||
|
pl = sys.modules["polars"]
|
||
|
return pl.Series(X_indexed.row(0))
|
||
|
return X_indexed
|
||
|
|
||
|
|
||
|
def _determine_key_type(key, accept_slice=True):
|
||
|
"""Determine the data type of key.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : scalar, slice or array-like
|
||
|
The key from which we want to infer the data type.
|
||
|
|
||
|
accept_slice : bool, default=True
|
||
|
Whether or not to raise an error if the key is a slice.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtype : {'int', 'str', 'bool', None}
|
||
|
Returns the data type of key.
|
||
|
"""
|
||
|
err_msg = (
|
||
|
"No valid specification of the columns. Only a scalar, list or "
|
||
|
"slice of all integers or all strings, or boolean mask is "
|
||
|
"allowed"
|
||
|
)
|
||
|
|
||
|
dtype_to_str = {int: "int", str: "str", bool: "bool", np.bool_: "bool"}
|
||
|
array_dtype_to_str = {
|
||
|
"i": "int",
|
||
|
"u": "int",
|
||
|
"b": "bool",
|
||
|
"O": "str",
|
||
|
"U": "str",
|
||
|
"S": "str",
|
||
|
}
|
||
|
|
||
|
if key is None:
|
||
|
return None
|
||
|
if isinstance(key, tuple(dtype_to_str.keys())):
|
||
|
try:
|
||
|
return dtype_to_str[type(key)]
|
||
|
except KeyError:
|
||
|
raise ValueError(err_msg)
|
||
|
if isinstance(key, slice):
|
||
|
if not accept_slice:
|
||
|
raise TypeError(
|
||
|
"Only array-like or scalar are supported. A Python slice was given."
|
||
|
)
|
||
|
if key.start is None and key.stop is None:
|
||
|
return None
|
||
|
key_start_type = _determine_key_type(key.start)
|
||
|
key_stop_type = _determine_key_type(key.stop)
|
||
|
if key_start_type is not None and key_stop_type is not None:
|
||
|
if key_start_type != key_stop_type:
|
||
|
raise ValueError(err_msg)
|
||
|
if key_start_type is not None:
|
||
|
return key_start_type
|
||
|
return key_stop_type
|
||
|
# TODO(1.9) remove UserList when the force_int_remainder_cols param
|
||
|
# of ColumnTransformer is removed
|
||
|
if isinstance(key, (list, tuple, UserList)):
|
||
|
unique_key = set(key)
|
||
|
key_type = {_determine_key_type(elt) for elt in unique_key}
|
||
|
if not key_type:
|
||
|
return None
|
||
|
if len(key_type) != 1:
|
||
|
raise ValueError(err_msg)
|
||
|
return key_type.pop()
|
||
|
if hasattr(key, "dtype"):
|
||
|
xp, is_array_api = get_namespace(key)
|
||
|
# NumPy arrays are special-cased in their own branch because the Array API
|
||
|
# cannot handle object/string-based dtypes that are often used to index
|
||
|
# columns of dataframes by names.
|
||
|
if is_array_api and not _is_numpy_namespace(xp):
|
||
|
if xp.isdtype(key.dtype, "bool"):
|
||
|
return "bool"
|
||
|
elif xp.isdtype(key.dtype, "integral"):
|
||
|
return "int"
|
||
|
else:
|
||
|
raise ValueError(err_msg)
|
||
|
else:
|
||
|
try:
|
||
|
return array_dtype_to_str[key.dtype.kind]
|
||
|
except KeyError:
|
||
|
raise ValueError(err_msg)
|
||
|
raise ValueError(err_msg)
|
||
|
|
||
|
|
||
|
def _safe_indexing(X, indices, *, axis=0):
|
||
|
"""Return rows, items or columns of X using indices.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This utility is documented, but **private**. This means that
|
||
|
backward compatibility might be broken without any deprecation
|
||
|
cycle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series
|
||
|
Data from which to sample rows, items or columns. `list` are only
|
||
|
supported when `axis=0`.
|
||
|
indices : bool, int, str, slice, array-like
|
||
|
- If `axis=0`, boolean and integer array-like, integer slice,
|
||
|
and scalar integer are supported.
|
||
|
- If `axis=1`:
|
||
|
- to select a single column, `indices` can be of `int` type for
|
||
|
all `X` types and `str` only for dataframe. The selected subset
|
||
|
will be 1D, unless `X` is a sparse matrix in which case it will
|
||
|
be 2D.
|
||
|
- to select multiples columns, `indices` can be one of the
|
||
|
following: `list`, `array`, `slice`. The type used in
|
||
|
these containers can be one of the following: `int`, 'bool' and
|
||
|
`str`. However, `str` is only supported when `X` is a dataframe.
|
||
|
The selected subset will be 2D.
|
||
|
axis : int, default=0
|
||
|
The axis along which `X` will be subsampled. `axis=0` will select
|
||
|
rows while `axis=1` will select columns.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
subset
|
||
|
Subset of X on axis 0 or 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are
|
||
|
not supported.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.utils import _safe_indexing
|
||
|
>>> data = np.array([[1, 2], [3, 4], [5, 6]])
|
||
|
>>> _safe_indexing(data, 0, axis=0) # select the first row
|
||
|
array([1, 2])
|
||
|
>>> _safe_indexing(data, 0, axis=1) # select the first column
|
||
|
array([1, 3, 5])
|
||
|
"""
|
||
|
if indices is None:
|
||
|
return X
|
||
|
|
||
|
if axis not in (0, 1):
|
||
|
raise ValueError(
|
||
|
"'axis' should be either 0 (to index rows) or 1 (to index "
|
||
|
" column). Got {} instead.".format(axis)
|
||
|
)
|
||
|
|
||
|
indices_dtype = _determine_key_type(indices)
|
||
|
|
||
|
if axis == 0 and indices_dtype == "str":
|
||
|
raise ValueError("String indexing is not supported with 'axis=0'")
|
||
|
|
||
|
if axis == 1 and isinstance(X, list):
|
||
|
raise ValueError("axis=1 is not supported for lists")
|
||
|
|
||
|
if axis == 1 and hasattr(X, "shape") and len(X.shape) != 2:
|
||
|
raise ValueError(
|
||
|
"'X' should be a 2D NumPy array, 2D sparse matrix or "
|
||
|
"dataframe when indexing the columns (i.e. 'axis=1'). "
|
||
|
"Got {} instead with {} dimension(s).".format(type(X), len(X.shape))
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
axis == 1
|
||
|
and indices_dtype == "str"
|
||
|
and not (_is_pandas_df(X) or _use_interchange_protocol(X))
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"Specifying the columns using strings is only supported for dataframes."
|
||
|
)
|
||
|
|
||
|
if hasattr(X, "iloc"):
|
||
|
# TODO: we should probably use _is_pandas_df_or_series(X) instead but this
|
||
|
# would require updating some tests such as test_train_test_split_mock_pandas.
|
||
|
return _pandas_indexing(X, indices, indices_dtype, axis=axis)
|
||
|
elif _is_polars_df_or_series(X):
|
||
|
return _polars_indexing(X, indices, indices_dtype, axis=axis)
|
||
|
elif hasattr(X, "shape"):
|
||
|
return _array_indexing(X, indices, indices_dtype, axis=axis)
|
||
|
else:
|
||
|
return _list_indexing(X, indices, indices_dtype)
|
||
|
|
||
|
|
||
|
def _safe_assign(X, values, *, row_indexer=None, column_indexer=None):
|
||
|
"""Safe assignment to a numpy array, sparse matrix, or pandas dataframe.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse-matrix, dataframe}
|
||
|
Array to be modified. It is expected to be 2-dimensional.
|
||
|
|
||
|
values : ndarray
|
||
|
The values to be assigned to `X`.
|
||
|
|
||
|
row_indexer : array-like, dtype={int, bool}, default=None
|
||
|
A 1-dimensional array to select the rows of interest. If `None`, all
|
||
|
rows are selected.
|
||
|
|
||
|
column_indexer : array-like, dtype={int, bool}, default=None
|
||
|
A 1-dimensional array to select the columns of interest. If `None`, all
|
||
|
columns are selected.
|
||
|
"""
|
||
|
row_indexer = slice(None, None, None) if row_indexer is None else row_indexer
|
||
|
column_indexer = (
|
||
|
slice(None, None, None) if column_indexer is None else column_indexer
|
||
|
)
|
||
|
|
||
|
if hasattr(X, "iloc"): # pandas dataframe
|
||
|
with warnings.catch_warnings():
|
||
|
# pandas >= 1.5 raises a warning when using iloc to set values in a column
|
||
|
# that does not have the same type as the column being set. It happens
|
||
|
# for instance when setting a categorical column with a string.
|
||
|
# In the future the behavior won't change and the warning should disappear.
|
||
|
# TODO(1.3): check if the warning is still raised or remove the filter.
|
||
|
warnings.simplefilter("ignore", FutureWarning)
|
||
|
X.iloc[row_indexer, column_indexer] = values
|
||
|
else: # numpy array or sparse matrix
|
||
|
X[row_indexer, column_indexer] = values
|
||
|
|
||
|
|
||
|
def _get_column_indices_for_bool_or_int(key, n_columns):
|
||
|
# Convert key into list of positive integer indexes
|
||
|
try:
|
||
|
idx = _safe_indexing(np.arange(n_columns), key)
|
||
|
except IndexError as e:
|
||
|
raise ValueError(
|
||
|
f"all features must be in [0, {n_columns - 1}] or [-{n_columns}, 0]"
|
||
|
) from e
|
||
|
return np.atleast_1d(idx).tolist()
|
||
|
|
||
|
|
||
|
def _get_column_indices(X, key):
|
||
|
"""Get feature column indices for input data X and key.
|
||
|
|
||
|
For accepted values of `key`, see the docstring of
|
||
|
:func:`_safe_indexing`.
|
||
|
"""
|
||
|
key_dtype = _determine_key_type(key)
|
||
|
if _use_interchange_protocol(X):
|
||
|
return _get_column_indices_interchange(X.__dataframe__(), key, key_dtype)
|
||
|
|
||
|
n_columns = X.shape[1]
|
||
|
if isinstance(key, (list, tuple)) and not key:
|
||
|
# we get an empty list
|
||
|
return []
|
||
|
elif key_dtype in ("bool", "int"):
|
||
|
return _get_column_indices_for_bool_or_int(key, n_columns)
|
||
|
else:
|
||
|
try:
|
||
|
all_columns = X.columns
|
||
|
except AttributeError:
|
||
|
raise ValueError(
|
||
|
"Specifying the columns using strings is only supported for dataframes."
|
||
|
)
|
||
|
if isinstance(key, str):
|
||
|
columns = [key]
|
||
|
elif isinstance(key, slice):
|
||
|
start, stop = key.start, key.stop
|
||
|
if start is not None:
|
||
|
start = all_columns.get_loc(start)
|
||
|
if stop is not None:
|
||
|
# pandas indexing with strings is endpoint included
|
||
|
stop = all_columns.get_loc(stop) + 1
|
||
|
else:
|
||
|
stop = n_columns + 1
|
||
|
return list(islice(range(n_columns), start, stop))
|
||
|
else:
|
||
|
columns = list(key)
|
||
|
|
||
|
try:
|
||
|
column_indices = []
|
||
|
for col in columns:
|
||
|
col_idx = all_columns.get_loc(col)
|
||
|
if not isinstance(col_idx, numbers.Integral):
|
||
|
raise ValueError(
|
||
|
f"Selected columns, {columns}, are not unique in dataframe"
|
||
|
)
|
||
|
column_indices.append(col_idx)
|
||
|
|
||
|
except KeyError as e:
|
||
|
raise ValueError("A given column is not a column of the dataframe") from e
|
||
|
|
||
|
return column_indices
|
||
|
|
||
|
|
||
|
def _get_column_indices_interchange(X_interchange, key, key_dtype):
|
||
|
"""Same as _get_column_indices but for X with __dataframe__ protocol."""
|
||
|
|
||
|
n_columns = X_interchange.num_columns()
|
||
|
|
||
|
if isinstance(key, (list, tuple)) and not key:
|
||
|
# we get an empty list
|
||
|
return []
|
||
|
elif key_dtype in ("bool", "int"):
|
||
|
return _get_column_indices_for_bool_or_int(key, n_columns)
|
||
|
else:
|
||
|
column_names = list(X_interchange.column_names())
|
||
|
|
||
|
if isinstance(key, slice):
|
||
|
if key.step not in [1, None]:
|
||
|
raise NotImplementedError("key.step must be 1 or None")
|
||
|
start, stop = key.start, key.stop
|
||
|
if start is not None:
|
||
|
start = column_names.index(start)
|
||
|
|
||
|
if stop is not None:
|
||
|
stop = column_names.index(stop) + 1
|
||
|
else:
|
||
|
stop = n_columns + 1
|
||
|
return list(islice(range(n_columns), start, stop))
|
||
|
|
||
|
selected_columns = [key] if np.isscalar(key) else key
|
||
|
|
||
|
try:
|
||
|
return [column_names.index(col) for col in selected_columns]
|
||
|
except ValueError as e:
|
||
|
raise ValueError("A given column is not a column of the dataframe") from e
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"replace": ["boolean"],
|
||
|
"n_samples": [Interval(numbers.Integral, 1, None, closed="left"), None],
|
||
|
"random_state": ["random_state"],
|
||
|
"stratify": ["array-like", "sparse matrix", None],
|
||
|
},
|
||
|
prefer_skip_nested_validation=True,
|
||
|
)
|
||
|
def resample(*arrays, replace=True, n_samples=None, random_state=None, stratify=None):
|
||
|
"""Resample arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
The default strategy implements one step of the bootstrapping
|
||
|
procedure.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*arrays : sequence of array-like of shape (n_samples,) or \
|
||
|
(n_samples, n_outputs)
|
||
|
Indexable data-structures can be arrays, lists, dataframes or scipy
|
||
|
sparse matrices with consistent first dimension.
|
||
|
|
||
|
replace : bool, default=True
|
||
|
Implements resampling with replacement. If False, this will implement
|
||
|
(sliced) random permutations.
|
||
|
|
||
|
n_samples : int, default=None
|
||
|
Number of samples to generate. If left to None this is
|
||
|
automatically set to the first dimension of the arrays.
|
||
|
If replace is False it should not be larger than the length of
|
||
|
arrays.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Determines random number generation for shuffling
|
||
|
the data.
|
||
|
Pass an int for reproducible results across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
stratify : {array-like, sparse matrix} of shape (n_samples,) or \
|
||
|
(n_samples, n_outputs), default=None
|
||
|
If not None, data is split in a stratified fashion, using this as
|
||
|
the class labels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
resampled_arrays : sequence of array-like of shape (n_samples,) or \
|
||
|
(n_samples, n_outputs)
|
||
|
Sequence of resampled copies of the collections. The original arrays
|
||
|
are not impacted.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
shuffle : Shuffle arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It is possible to mix sparse and dense arrays in the same run::
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
|
||
|
>>> y = np.array([0, 1, 2])
|
||
|
|
||
|
>>> from scipy.sparse import coo_matrix
|
||
|
>>> X_sparse = coo_matrix(X)
|
||
|
|
||
|
>>> from sklearn.utils import resample
|
||
|
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
|
||
|
>>> X
|
||
|
array([[1., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> X_sparse
|
||
|
<3x2 sparse matrix of type '<... 'numpy.float64'>'
|
||
|
with 4 stored elements in Compressed Sparse Row format>
|
||
|
|
||
|
>>> X_sparse.toarray()
|
||
|
array([[1., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> y
|
||
|
array([0, 1, 0])
|
||
|
|
||
|
>>> resample(y, n_samples=2, random_state=0)
|
||
|
array([0, 1])
|
||
|
|
||
|
Example using stratification::
|
||
|
|
||
|
>>> y = [0, 0, 1, 1, 1, 1, 1, 1, 1]
|
||
|
>>> resample(y, n_samples=5, replace=False, stratify=y,
|
||
|
... random_state=0)
|
||
|
[1, 1, 1, 0, 1]
|
||
|
"""
|
||
|
max_n_samples = n_samples
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
if len(arrays) == 0:
|
||
|
return None
|
||
|
|
||
|
first = arrays[0]
|
||
|
n_samples = first.shape[0] if hasattr(first, "shape") else len(first)
|
||
|
|
||
|
if max_n_samples is None:
|
||
|
max_n_samples = n_samples
|
||
|
elif (max_n_samples > n_samples) and (not replace):
|
||
|
raise ValueError(
|
||
|
"Cannot sample %d out of arrays with dim %d when replace is False"
|
||
|
% (max_n_samples, n_samples)
|
||
|
)
|
||
|
|
||
|
check_consistent_length(*arrays)
|
||
|
|
||
|
if stratify is None:
|
||
|
if replace:
|
||
|
indices = random_state.randint(0, n_samples, size=(max_n_samples,))
|
||
|
else:
|
||
|
indices = np.arange(n_samples)
|
||
|
random_state.shuffle(indices)
|
||
|
indices = indices[:max_n_samples]
|
||
|
else:
|
||
|
# Code adapted from StratifiedShuffleSplit()
|
||
|
y = check_array(stratify, ensure_2d=False, dtype=None)
|
||
|
if y.ndim == 2:
|
||
|
# for multi-label y, map each distinct row to a string repr
|
||
|
# using join because str(row) uses an ellipsis if len(row) > 1000
|
||
|
y = np.array([" ".join(row.astype("str")) for row in y])
|
||
|
|
||
|
classes, y_indices = np.unique(y, return_inverse=True)
|
||
|
n_classes = classes.shape[0]
|
||
|
|
||
|
class_counts = np.bincount(y_indices)
|
||
|
|
||
|
# Find the sorted list of instances for each class:
|
||
|
# (np.unique above performs a sort, so code is O(n logn) already)
|
||
|
class_indices = np.split(
|
||
|
np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]
|
||
|
)
|
||
|
|
||
|
n_i = _approximate_mode(class_counts, max_n_samples, random_state)
|
||
|
|
||
|
indices = []
|
||
|
|
||
|
for i in range(n_classes):
|
||
|
indices_i = random_state.choice(class_indices[i], n_i[i], replace=replace)
|
||
|
indices.extend(indices_i)
|
||
|
|
||
|
indices = random_state.permutation(indices)
|
||
|
|
||
|
# convert sparse matrices to CSR for row-based indexing
|
||
|
arrays = [a.tocsr() if issparse(a) else a for a in arrays]
|
||
|
resampled_arrays = [_safe_indexing(a, indices) for a in arrays]
|
||
|
if len(resampled_arrays) == 1:
|
||
|
# syntactic sugar for the unit argument case
|
||
|
return resampled_arrays[0]
|
||
|
else:
|
||
|
return resampled_arrays
|
||
|
|
||
|
|
||
|
def shuffle(*arrays, random_state=None, n_samples=None):
|
||
|
"""Shuffle arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
This is a convenience alias to ``resample(*arrays, replace=False)`` to do
|
||
|
random permutations of the collections.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*arrays : sequence of indexable data-structures
|
||
|
Indexable data-structures can be arrays, lists, dataframes or scipy
|
||
|
sparse matrices with consistent first dimension.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Determines random number generation for shuffling
|
||
|
the data.
|
||
|
Pass an int for reproducible results across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
n_samples : int, default=None
|
||
|
Number of samples to generate. If left to None this is
|
||
|
automatically set to the first dimension of the arrays. It should
|
||
|
not be larger than the length of arrays.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
shuffled_arrays : sequence of indexable data-structures
|
||
|
Sequence of shuffled copies of the collections. The original arrays
|
||
|
are not impacted.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
resample : Resample arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It is possible to mix sparse and dense arrays in the same run::
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
|
||
|
>>> y = np.array([0, 1, 2])
|
||
|
|
||
|
>>> from scipy.sparse import coo_matrix
|
||
|
>>> X_sparse = coo_matrix(X)
|
||
|
|
||
|
>>> from sklearn.utils import shuffle
|
||
|
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
|
||
|
>>> X
|
||
|
array([[0., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> X_sparse
|
||
|
<3x2 sparse matrix of type '<... 'numpy.float64'>'
|
||
|
with 3 stored elements in Compressed Sparse Row format>
|
||
|
|
||
|
>>> X_sparse.toarray()
|
||
|
array([[0., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> y
|
||
|
array([2, 1, 0])
|
||
|
|
||
|
>>> shuffle(y, n_samples=2, random_state=0)
|
||
|
array([0, 1])
|
||
|
"""
|
||
|
return resample(
|
||
|
*arrays, replace=False, n_samples=n_samples, random_state=random_state
|
||
|
)
|