632 lines
21 KiB
Python
632 lines
21 KiB
Python
|
"""Sparse rational function fields. """
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import Any
|
||
|
from functools import reduce
|
||
|
|
||
|
from operator import add, mul, lt, le, gt, ge
|
||
|
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.mod import Mod
|
||
|
from sympy.core.numbers import Exp1
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.core.sympify import CantSympify, sympify
|
||
|
from sympy.functions.elementary.exponential import ExpBase
|
||
|
from sympy.polys.domains.domainelement import DomainElement
|
||
|
from sympy.polys.domains.fractionfield import FractionField
|
||
|
from sympy.polys.domains.polynomialring import PolynomialRing
|
||
|
from sympy.polys.constructor import construct_domain
|
||
|
from sympy.polys.orderings import lex
|
||
|
from sympy.polys.polyerrors import CoercionFailed
|
||
|
from sympy.polys.polyoptions import build_options
|
||
|
from sympy.polys.polyutils import _parallel_dict_from_expr
|
||
|
from sympy.polys.rings import PolyElement
|
||
|
from sympy.printing.defaults import DefaultPrinting
|
||
|
from sympy.utilities import public
|
||
|
from sympy.utilities.iterables import is_sequence
|
||
|
from sympy.utilities.magic import pollute
|
||
|
|
||
|
@public
|
||
|
def field(symbols, domain, order=lex):
|
||
|
"""Construct new rational function field returning (field, x1, ..., xn). """
|
||
|
_field = FracField(symbols, domain, order)
|
||
|
return (_field,) + _field.gens
|
||
|
|
||
|
@public
|
||
|
def xfield(symbols, domain, order=lex):
|
||
|
"""Construct new rational function field returning (field, (x1, ..., xn)). """
|
||
|
_field = FracField(symbols, domain, order)
|
||
|
return (_field, _field.gens)
|
||
|
|
||
|
@public
|
||
|
def vfield(symbols, domain, order=lex):
|
||
|
"""Construct new rational function field and inject generators into global namespace. """
|
||
|
_field = FracField(symbols, domain, order)
|
||
|
pollute([ sym.name for sym in _field.symbols ], _field.gens)
|
||
|
return _field
|
||
|
|
||
|
@public
|
||
|
def sfield(exprs, *symbols, **options):
|
||
|
"""Construct a field deriving generators and domain
|
||
|
from options and input expressions.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
exprs : py:class:`~.Expr` or sequence of :py:class:`~.Expr` (sympifiable)
|
||
|
|
||
|
symbols : sequence of :py:class:`~.Symbol`/:py:class:`~.Expr`
|
||
|
|
||
|
options : keyword arguments understood by :py:class:`~.Options`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import exp, log, symbols, sfield
|
||
|
|
||
|
>>> x = symbols("x")
|
||
|
>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
|
||
|
>>> K
|
||
|
Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
|
||
|
>>> f
|
||
|
(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
|
||
|
"""
|
||
|
single = False
|
||
|
if not is_sequence(exprs):
|
||
|
exprs, single = [exprs], True
|
||
|
|
||
|
exprs = list(map(sympify, exprs))
|
||
|
opt = build_options(symbols, options)
|
||
|
numdens = []
|
||
|
for expr in exprs:
|
||
|
numdens.extend(expr.as_numer_denom())
|
||
|
reps, opt = _parallel_dict_from_expr(numdens, opt)
|
||
|
|
||
|
if opt.domain is None:
|
||
|
# NOTE: this is inefficient because construct_domain() automatically
|
||
|
# performs conversion to the target domain. It shouldn't do this.
|
||
|
coeffs = sum([list(rep.values()) for rep in reps], [])
|
||
|
opt.domain, _ = construct_domain(coeffs, opt=opt)
|
||
|
|
||
|
_field = FracField(opt.gens, opt.domain, opt.order)
|
||
|
fracs = []
|
||
|
for i in range(0, len(reps), 2):
|
||
|
fracs.append(_field(tuple(reps[i:i+2])))
|
||
|
|
||
|
if single:
|
||
|
return (_field, fracs[0])
|
||
|
else:
|
||
|
return (_field, fracs)
|
||
|
|
||
|
_field_cache: dict[Any, Any] = {}
|
||
|
|
||
|
class FracField(DefaultPrinting):
|
||
|
"""Multivariate distributed rational function field. """
|
||
|
|
||
|
def __new__(cls, symbols, domain, order=lex):
|
||
|
from sympy.polys.rings import PolyRing
|
||
|
ring = PolyRing(symbols, domain, order)
|
||
|
symbols = ring.symbols
|
||
|
ngens = ring.ngens
|
||
|
domain = ring.domain
|
||
|
order = ring.order
|
||
|
|
||
|
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
|
||
|
obj = _field_cache.get(_hash_tuple)
|
||
|
|
||
|
if obj is None:
|
||
|
obj = object.__new__(cls)
|
||
|
obj._hash_tuple = _hash_tuple
|
||
|
obj._hash = hash(_hash_tuple)
|
||
|
obj.ring = ring
|
||
|
obj.dtype = type("FracElement", (FracElement,), {"field": obj})
|
||
|
obj.symbols = symbols
|
||
|
obj.ngens = ngens
|
||
|
obj.domain = domain
|
||
|
obj.order = order
|
||
|
|
||
|
obj.zero = obj.dtype(ring.zero)
|
||
|
obj.one = obj.dtype(ring.one)
|
||
|
|
||
|
obj.gens = obj._gens()
|
||
|
|
||
|
for symbol, generator in zip(obj.symbols, obj.gens):
|
||
|
if isinstance(symbol, Symbol):
|
||
|
name = symbol.name
|
||
|
|
||
|
if not hasattr(obj, name):
|
||
|
setattr(obj, name, generator)
|
||
|
|
||
|
_field_cache[_hash_tuple] = obj
|
||
|
|
||
|
return obj
|
||
|
|
||
|
def _gens(self):
|
||
|
"""Return a list of polynomial generators. """
|
||
|
return tuple([ self.dtype(gen) for gen in self.ring.gens ])
|
||
|
|
||
|
def __getnewargs__(self):
|
||
|
return (self.symbols, self.domain, self.order)
|
||
|
|
||
|
def __hash__(self):
|
||
|
return self._hash
|
||
|
|
||
|
def index(self, gen):
|
||
|
if isinstance(gen, self.dtype):
|
||
|
return self.ring.index(gen.to_poly())
|
||
|
else:
|
||
|
raise ValueError("expected a %s, got %s instead" % (self.dtype,gen))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, FracField) and \
|
||
|
(self.symbols, self.ngens, self.domain, self.order) == \
|
||
|
(other.symbols, other.ngens, other.domain, other.order)
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self == other
|
||
|
|
||
|
def raw_new(self, numer, denom=None):
|
||
|
return self.dtype(numer, denom)
|
||
|
def new(self, numer, denom=None):
|
||
|
if denom is None: denom = self.ring.one
|
||
|
numer, denom = numer.cancel(denom)
|
||
|
return self.raw_new(numer, denom)
|
||
|
|
||
|
def domain_new(self, element):
|
||
|
return self.domain.convert(element)
|
||
|
|
||
|
def ground_new(self, element):
|
||
|
try:
|
||
|
return self.new(self.ring.ground_new(element))
|
||
|
except CoercionFailed:
|
||
|
domain = self.domain
|
||
|
|
||
|
if not domain.is_Field and domain.has_assoc_Field:
|
||
|
ring = self.ring
|
||
|
ground_field = domain.get_field()
|
||
|
element = ground_field.convert(element)
|
||
|
numer = ring.ground_new(ground_field.numer(element))
|
||
|
denom = ring.ground_new(ground_field.denom(element))
|
||
|
return self.raw_new(numer, denom)
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
def field_new(self, element):
|
||
|
if isinstance(element, FracElement):
|
||
|
if self == element.field:
|
||
|
return element
|
||
|
|
||
|
if isinstance(self.domain, FractionField) and \
|
||
|
self.domain.field == element.field:
|
||
|
return self.ground_new(element)
|
||
|
elif isinstance(self.domain, PolynomialRing) and \
|
||
|
self.domain.ring.to_field() == element.field:
|
||
|
return self.ground_new(element)
|
||
|
else:
|
||
|
raise NotImplementedError("conversion")
|
||
|
elif isinstance(element, PolyElement):
|
||
|
denom, numer = element.clear_denoms()
|
||
|
|
||
|
if isinstance(self.domain, PolynomialRing) and \
|
||
|
numer.ring == self.domain.ring:
|
||
|
numer = self.ring.ground_new(numer)
|
||
|
elif isinstance(self.domain, FractionField) and \
|
||
|
numer.ring == self.domain.field.to_ring():
|
||
|
numer = self.ring.ground_new(numer)
|
||
|
else:
|
||
|
numer = numer.set_ring(self.ring)
|
||
|
|
||
|
denom = self.ring.ground_new(denom)
|
||
|
return self.raw_new(numer, denom)
|
||
|
elif isinstance(element, tuple) and len(element) == 2:
|
||
|
numer, denom = list(map(self.ring.ring_new, element))
|
||
|
return self.new(numer, denom)
|
||
|
elif isinstance(element, str):
|
||
|
raise NotImplementedError("parsing")
|
||
|
elif isinstance(element, Expr):
|
||
|
return self.from_expr(element)
|
||
|
else:
|
||
|
return self.ground_new(element)
|
||
|
|
||
|
__call__ = field_new
|
||
|
|
||
|
def _rebuild_expr(self, expr, mapping):
|
||
|
domain = self.domain
|
||
|
powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
|
||
|
if gen.is_Pow or isinstance(gen, ExpBase))
|
||
|
|
||
|
def _rebuild(expr):
|
||
|
generator = mapping.get(expr)
|
||
|
|
||
|
if generator is not None:
|
||
|
return generator
|
||
|
elif expr.is_Add:
|
||
|
return reduce(add, list(map(_rebuild, expr.args)))
|
||
|
elif expr.is_Mul:
|
||
|
return reduce(mul, list(map(_rebuild, expr.args)))
|
||
|
elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
|
||
|
b, e = expr.as_base_exp()
|
||
|
# look for bg**eg whose integer power may be b**e
|
||
|
for gen, (bg, eg) in powers:
|
||
|
if bg == b and Mod(e, eg) == 0:
|
||
|
return mapping.get(gen)**int(e/eg)
|
||
|
if e.is_Integer and e is not S.One:
|
||
|
return _rebuild(b)**int(e)
|
||
|
elif mapping.get(1/expr) is not None:
|
||
|
return 1/mapping.get(1/expr)
|
||
|
|
||
|
try:
|
||
|
return domain.convert(expr)
|
||
|
except CoercionFailed:
|
||
|
if not domain.is_Field and domain.has_assoc_Field:
|
||
|
return domain.get_field().convert(expr)
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
return _rebuild(expr)
|
||
|
|
||
|
def from_expr(self, expr):
|
||
|
mapping = dict(list(zip(self.symbols, self.gens)))
|
||
|
|
||
|
try:
|
||
|
frac = self._rebuild_expr(sympify(expr), mapping)
|
||
|
except CoercionFailed:
|
||
|
raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
|
||
|
else:
|
||
|
return self.field_new(frac)
|
||
|
|
||
|
def to_domain(self):
|
||
|
return FractionField(self)
|
||
|
|
||
|
def to_ring(self):
|
||
|
from sympy.polys.rings import PolyRing
|
||
|
return PolyRing(self.symbols, self.domain, self.order)
|
||
|
|
||
|
class FracElement(DomainElement, DefaultPrinting, CantSympify):
|
||
|
"""Element of multivariate distributed rational function field. """
|
||
|
|
||
|
def __init__(self, numer, denom=None):
|
||
|
if denom is None:
|
||
|
denom = self.field.ring.one
|
||
|
elif not denom:
|
||
|
raise ZeroDivisionError("zero denominator")
|
||
|
|
||
|
self.numer = numer
|
||
|
self.denom = denom
|
||
|
|
||
|
def raw_new(f, numer, denom):
|
||
|
return f.__class__(numer, denom)
|
||
|
def new(f, numer, denom):
|
||
|
return f.raw_new(*numer.cancel(denom))
|
||
|
|
||
|
def to_poly(f):
|
||
|
if f.denom != 1:
|
||
|
raise ValueError("f.denom should be 1")
|
||
|
return f.numer
|
||
|
|
||
|
def parent(self):
|
||
|
return self.field.to_domain()
|
||
|
|
||
|
def __getnewargs__(self):
|
||
|
return (self.field, self.numer, self.denom)
|
||
|
|
||
|
_hash = None
|
||
|
|
||
|
def __hash__(self):
|
||
|
_hash = self._hash
|
||
|
if _hash is None:
|
||
|
self._hash = _hash = hash((self.field, self.numer, self.denom))
|
||
|
return _hash
|
||
|
|
||
|
def copy(self):
|
||
|
return self.raw_new(self.numer.copy(), self.denom.copy())
|
||
|
|
||
|
def set_field(self, new_field):
|
||
|
if self.field == new_field:
|
||
|
return self
|
||
|
else:
|
||
|
new_ring = new_field.ring
|
||
|
numer = self.numer.set_ring(new_ring)
|
||
|
denom = self.denom.set_ring(new_ring)
|
||
|
return new_field.new(numer, denom)
|
||
|
|
||
|
def as_expr(self, *symbols):
|
||
|
return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)
|
||
|
|
||
|
def __eq__(f, g):
|
||
|
if isinstance(g, FracElement) and f.field == g.field:
|
||
|
return f.numer == g.numer and f.denom == g.denom
|
||
|
else:
|
||
|
return f.numer == g and f.denom == f.field.ring.one
|
||
|
|
||
|
def __ne__(f, g):
|
||
|
return not f == g
|
||
|
|
||
|
def __bool__(f):
|
||
|
return bool(f.numer)
|
||
|
|
||
|
def sort_key(self):
|
||
|
return (self.denom.sort_key(), self.numer.sort_key())
|
||
|
|
||
|
def _cmp(f1, f2, op):
|
||
|
if isinstance(f2, f1.field.dtype):
|
||
|
return op(f1.sort_key(), f2.sort_key())
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
def __lt__(f1, f2):
|
||
|
return f1._cmp(f2, lt)
|
||
|
def __le__(f1, f2):
|
||
|
return f1._cmp(f2, le)
|
||
|
def __gt__(f1, f2):
|
||
|
return f1._cmp(f2, gt)
|
||
|
def __ge__(f1, f2):
|
||
|
return f1._cmp(f2, ge)
|
||
|
|
||
|
def __pos__(f):
|
||
|
"""Negate all coefficients in ``f``. """
|
||
|
return f.raw_new(f.numer, f.denom)
|
||
|
|
||
|
def __neg__(f):
|
||
|
"""Negate all coefficients in ``f``. """
|
||
|
return f.raw_new(-f.numer, f.denom)
|
||
|
|
||
|
def _extract_ground(self, element):
|
||
|
domain = self.field.domain
|
||
|
|
||
|
try:
|
||
|
element = domain.convert(element)
|
||
|
except CoercionFailed:
|
||
|
if not domain.is_Field and domain.has_assoc_Field:
|
||
|
ground_field = domain.get_field()
|
||
|
|
||
|
try:
|
||
|
element = ground_field.convert(element)
|
||
|
except CoercionFailed:
|
||
|
pass
|
||
|
else:
|
||
|
return -1, ground_field.numer(element), ground_field.denom(element)
|
||
|
|
||
|
return 0, None, None
|
||
|
else:
|
||
|
return 1, element, None
|
||
|
|
||
|
def __add__(f, g):
|
||
|
"""Add rational functions ``f`` and ``g``. """
|
||
|
field = f.field
|
||
|
|
||
|
if not g:
|
||
|
return f
|
||
|
elif not f:
|
||
|
return g
|
||
|
elif isinstance(g, field.dtype):
|
||
|
if f.denom == g.denom:
|
||
|
return f.new(f.numer + g.numer, f.denom)
|
||
|
else:
|
||
|
return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
|
||
|
elif isinstance(g, field.ring.dtype):
|
||
|
return f.new(f.numer + f.denom*g, f.denom)
|
||
|
else:
|
||
|
if isinstance(g, FracElement):
|
||
|
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
||
|
pass
|
||
|
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
||
|
return g.__radd__(f)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
elif isinstance(g, PolyElement):
|
||
|
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
||
|
pass
|
||
|
else:
|
||
|
return g.__radd__(f)
|
||
|
|
||
|
return f.__radd__(g)
|
||
|
|
||
|
def __radd__(f, c):
|
||
|
if isinstance(c, f.field.ring.dtype):
|
||
|
return f.new(f.numer + f.denom*c, f.denom)
|
||
|
|
||
|
op, g_numer, g_denom = f._extract_ground(c)
|
||
|
|
||
|
if op == 1:
|
||
|
return f.new(f.numer + f.denom*g_numer, f.denom)
|
||
|
elif not op:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
|
||
|
|
||
|
def __sub__(f, g):
|
||
|
"""Subtract rational functions ``f`` and ``g``. """
|
||
|
field = f.field
|
||
|
|
||
|
if not g:
|
||
|
return f
|
||
|
elif not f:
|
||
|
return -g
|
||
|
elif isinstance(g, field.dtype):
|
||
|
if f.denom == g.denom:
|
||
|
return f.new(f.numer - g.numer, f.denom)
|
||
|
else:
|
||
|
return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
|
||
|
elif isinstance(g, field.ring.dtype):
|
||
|
return f.new(f.numer - f.denom*g, f.denom)
|
||
|
else:
|
||
|
if isinstance(g, FracElement):
|
||
|
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
||
|
pass
|
||
|
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
||
|
return g.__rsub__(f)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
elif isinstance(g, PolyElement):
|
||
|
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
||
|
pass
|
||
|
else:
|
||
|
return g.__rsub__(f)
|
||
|
|
||
|
op, g_numer, g_denom = f._extract_ground(g)
|
||
|
|
||
|
if op == 1:
|
||
|
return f.new(f.numer - f.denom*g_numer, f.denom)
|
||
|
elif not op:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)
|
||
|
|
||
|
def __rsub__(f, c):
|
||
|
if isinstance(c, f.field.ring.dtype):
|
||
|
return f.new(-f.numer + f.denom*c, f.denom)
|
||
|
|
||
|
op, g_numer, g_denom = f._extract_ground(c)
|
||
|
|
||
|
if op == 1:
|
||
|
return f.new(-f.numer + f.denom*g_numer, f.denom)
|
||
|
elif not op:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
|
||
|
|
||
|
def __mul__(f, g):
|
||
|
"""Multiply rational functions ``f`` and ``g``. """
|
||
|
field = f.field
|
||
|
|
||
|
if not f or not g:
|
||
|
return field.zero
|
||
|
elif isinstance(g, field.dtype):
|
||
|
return f.new(f.numer*g.numer, f.denom*g.denom)
|
||
|
elif isinstance(g, field.ring.dtype):
|
||
|
return f.new(f.numer*g, f.denom)
|
||
|
else:
|
||
|
if isinstance(g, FracElement):
|
||
|
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
||
|
pass
|
||
|
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
||
|
return g.__rmul__(f)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
elif isinstance(g, PolyElement):
|
||
|
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
||
|
pass
|
||
|
else:
|
||
|
return g.__rmul__(f)
|
||
|
|
||
|
return f.__rmul__(g)
|
||
|
|
||
|
def __rmul__(f, c):
|
||
|
if isinstance(c, f.field.ring.dtype):
|
||
|
return f.new(f.numer*c, f.denom)
|
||
|
|
||
|
op, g_numer, g_denom = f._extract_ground(c)
|
||
|
|
||
|
if op == 1:
|
||
|
return f.new(f.numer*g_numer, f.denom)
|
||
|
elif not op:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return f.new(f.numer*g_numer, f.denom*g_denom)
|
||
|
|
||
|
def __truediv__(f, g):
|
||
|
"""Computes quotient of fractions ``f`` and ``g``. """
|
||
|
field = f.field
|
||
|
|
||
|
if not g:
|
||
|
raise ZeroDivisionError
|
||
|
elif isinstance(g, field.dtype):
|
||
|
return f.new(f.numer*g.denom, f.denom*g.numer)
|
||
|
elif isinstance(g, field.ring.dtype):
|
||
|
return f.new(f.numer, f.denom*g)
|
||
|
else:
|
||
|
if isinstance(g, FracElement):
|
||
|
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
||
|
pass
|
||
|
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
||
|
return g.__rtruediv__(f)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
elif isinstance(g, PolyElement):
|
||
|
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
||
|
pass
|
||
|
else:
|
||
|
return g.__rtruediv__(f)
|
||
|
|
||
|
op, g_numer, g_denom = f._extract_ground(g)
|
||
|
|
||
|
if op == 1:
|
||
|
return f.new(f.numer, f.denom*g_numer)
|
||
|
elif not op:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return f.new(f.numer*g_denom, f.denom*g_numer)
|
||
|
|
||
|
def __rtruediv__(f, c):
|
||
|
if not f:
|
||
|
raise ZeroDivisionError
|
||
|
elif isinstance(c, f.field.ring.dtype):
|
||
|
return f.new(f.denom*c, f.numer)
|
||
|
|
||
|
op, g_numer, g_denom = f._extract_ground(c)
|
||
|
|
||
|
if op == 1:
|
||
|
return f.new(f.denom*g_numer, f.numer)
|
||
|
elif not op:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return f.new(f.denom*g_numer, f.numer*g_denom)
|
||
|
|
||
|
def __pow__(f, n):
|
||
|
"""Raise ``f`` to a non-negative power ``n``. """
|
||
|
if n >= 0:
|
||
|
return f.raw_new(f.numer**n, f.denom**n)
|
||
|
elif not f:
|
||
|
raise ZeroDivisionError
|
||
|
else:
|
||
|
return f.raw_new(f.denom**-n, f.numer**-n)
|
||
|
|
||
|
def diff(f, x):
|
||
|
"""Computes partial derivative in ``x``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.fields import field
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y, z = field("x,y,z", ZZ)
|
||
|
>>> ((x**2 + y)/(z + 1)).diff(x)
|
||
|
2*x/(z + 1)
|
||
|
|
||
|
"""
|
||
|
x = x.to_poly()
|
||
|
return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)
|
||
|
|
||
|
def __call__(f, *values):
|
||
|
if 0 < len(values) <= f.field.ngens:
|
||
|
return f.evaluate(list(zip(f.field.gens, values)))
|
||
|
else:
|
||
|
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))
|
||
|
|
||
|
def evaluate(f, x, a=None):
|
||
|
if isinstance(x, list) and a is None:
|
||
|
x = [ (X.to_poly(), a) for X, a in x ]
|
||
|
numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
|
||
|
else:
|
||
|
x = x.to_poly()
|
||
|
numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)
|
||
|
|
||
|
field = numer.ring.to_field()
|
||
|
return field.new(numer, denom)
|
||
|
|
||
|
def subs(f, x, a=None):
|
||
|
if isinstance(x, list) and a is None:
|
||
|
x = [ (X.to_poly(), a) for X, a in x ]
|
||
|
numer, denom = f.numer.subs(x), f.denom.subs(x)
|
||
|
else:
|
||
|
x = x.to_poly()
|
||
|
numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)
|
||
|
|
||
|
return f.new(numer, denom)
|
||
|
|
||
|
def compose(f, x, a=None):
|
||
|
raise NotImplementedError
|