Traktor/myenv/Lib/site-packages/sympy/polys/fields.py
2024-05-23 01:57:24 +02:00

632 lines
21 KiB
Python

"""Sparse rational function fields. """
from __future__ import annotations
from typing import Any
from functools import reduce
from operator import add, mul, lt, le, gt, ge
from sympy.core.expr import Expr
from sympy.core.mod import Mod
from sympy.core.numbers import Exp1
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import CantSympify, sympify
from sympy.functions.elementary.exponential import ExpBase
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.fractionfield import FractionField
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.constructor import construct_domain
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polyoptions import build_options
from sympy.polys.polyutils import _parallel_dict_from_expr
from sympy.polys.rings import PolyElement
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute
@public
def field(symbols, domain, order=lex):
"""Construct new rational function field returning (field, x1, ..., xn). """
_field = FracField(symbols, domain, order)
return (_field,) + _field.gens
@public
def xfield(symbols, domain, order=lex):
"""Construct new rational function field returning (field, (x1, ..., xn)). """
_field = FracField(symbols, domain, order)
return (_field, _field.gens)
@public
def vfield(symbols, domain, order=lex):
"""Construct new rational function field and inject generators into global namespace. """
_field = FracField(symbols, domain, order)
pollute([ sym.name for sym in _field.symbols ], _field.gens)
return _field
@public
def sfield(exprs, *symbols, **options):
"""Construct a field deriving generators and domain
from options and input expressions.
Parameters
==========
exprs : py:class:`~.Expr` or sequence of :py:class:`~.Expr` (sympifiable)
symbols : sequence of :py:class:`~.Symbol`/:py:class:`~.Expr`
options : keyword arguments understood by :py:class:`~.Options`
Examples
========
>>> from sympy import exp, log, symbols, sfield
>>> x = symbols("x")
>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
>>> K
Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
>>> f
(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
numdens = []
for expr in exprs:
numdens.extend(expr.as_numer_denom())
reps, opt = _parallel_dict_from_expr(numdens, opt)
if opt.domain is None:
# NOTE: this is inefficient because construct_domain() automatically
# performs conversion to the target domain. It shouldn't do this.
coeffs = sum([list(rep.values()) for rep in reps], [])
opt.domain, _ = construct_domain(coeffs, opt=opt)
_field = FracField(opt.gens, opt.domain, opt.order)
fracs = []
for i in range(0, len(reps), 2):
fracs.append(_field(tuple(reps[i:i+2])))
if single:
return (_field, fracs[0])
else:
return (_field, fracs)
_field_cache: dict[Any, Any] = {}
class FracField(DefaultPrinting):
"""Multivariate distributed rational function field. """
def __new__(cls, symbols, domain, order=lex):
from sympy.polys.rings import PolyRing
ring = PolyRing(symbols, domain, order)
symbols = ring.symbols
ngens = ring.ngens
domain = ring.domain
order = ring.order
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _field_cache.get(_hash_tuple)
if obj is None:
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.ring = ring
obj.dtype = type("FracElement", (FracElement,), {"field": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero = obj.dtype(ring.zero)
obj.one = obj.dtype(ring.one)
obj.gens = obj._gens()
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_field_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
return tuple([ self.dtype(gen) for gen in self.ring.gens ])
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __hash__(self):
return self._hash
def index(self, gen):
if isinstance(gen, self.dtype):
return self.ring.index(gen.to_poly())
else:
raise ValueError("expected a %s, got %s instead" % (self.dtype,gen))
def __eq__(self, other):
return isinstance(other, FracField) and \
(self.symbols, self.ngens, self.domain, self.order) == \
(other.symbols, other.ngens, other.domain, other.order)
def __ne__(self, other):
return not self == other
def raw_new(self, numer, denom=None):
return self.dtype(numer, denom)
def new(self, numer, denom=None):
if denom is None: denom = self.ring.one
numer, denom = numer.cancel(denom)
return self.raw_new(numer, denom)
def domain_new(self, element):
return self.domain.convert(element)
def ground_new(self, element):
try:
return self.new(self.ring.ground_new(element))
except CoercionFailed:
domain = self.domain
if not domain.is_Field and domain.has_assoc_Field:
ring = self.ring
ground_field = domain.get_field()
element = ground_field.convert(element)
numer = ring.ground_new(ground_field.numer(element))
denom = ring.ground_new(ground_field.denom(element))
return self.raw_new(numer, denom)
else:
raise
def field_new(self, element):
if isinstance(element, FracElement):
if self == element.field:
return element
if isinstance(self.domain, FractionField) and \
self.domain.field == element.field:
return self.ground_new(element)
elif isinstance(self.domain, PolynomialRing) and \
self.domain.ring.to_field() == element.field:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, PolyElement):
denom, numer = element.clear_denoms()
if isinstance(self.domain, PolynomialRing) and \
numer.ring == self.domain.ring:
numer = self.ring.ground_new(numer)
elif isinstance(self.domain, FractionField) and \
numer.ring == self.domain.field.to_ring():
numer = self.ring.ground_new(numer)
else:
numer = numer.set_ring(self.ring)
denom = self.ring.ground_new(denom)
return self.raw_new(numer, denom)
elif isinstance(element, tuple) and len(element) == 2:
numer, denom = list(map(self.ring.ring_new, element))
return self.new(numer, denom)
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = field_new
def _rebuild_expr(self, expr, mapping):
domain = self.domain
powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
if gen.is_Pow or isinstance(gen, ExpBase))
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
b, e = expr.as_base_exp()
# look for bg**eg whose integer power may be b**e
for gen, (bg, eg) in powers:
if bg == b and Mod(e, eg) == 0:
return mapping.get(gen)**int(e/eg)
if e.is_Integer and e is not S.One:
return _rebuild(b)**int(e)
elif mapping.get(1/expr) is not None:
return 1/mapping.get(1/expr)
try:
return domain.convert(expr)
except CoercionFailed:
if not domain.is_Field and domain.has_assoc_Field:
return domain.get_field().convert(expr)
else:
raise
return _rebuild(expr)
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
frac = self._rebuild_expr(sympify(expr), mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
else:
return self.field_new(frac)
def to_domain(self):
return FractionField(self)
def to_ring(self):
from sympy.polys.rings import PolyRing
return PolyRing(self.symbols, self.domain, self.order)
class FracElement(DomainElement, DefaultPrinting, CantSympify):
"""Element of multivariate distributed rational function field. """
def __init__(self, numer, denom=None):
if denom is None:
denom = self.field.ring.one
elif not denom:
raise ZeroDivisionError("zero denominator")
self.numer = numer
self.denom = denom
def raw_new(f, numer, denom):
return f.__class__(numer, denom)
def new(f, numer, denom):
return f.raw_new(*numer.cancel(denom))
def to_poly(f):
if f.denom != 1:
raise ValueError("f.denom should be 1")
return f.numer
def parent(self):
return self.field.to_domain()
def __getnewargs__(self):
return (self.field, self.numer, self.denom)
_hash = None
def __hash__(self):
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.field, self.numer, self.denom))
return _hash
def copy(self):
return self.raw_new(self.numer.copy(), self.denom.copy())
def set_field(self, new_field):
if self.field == new_field:
return self
else:
new_ring = new_field.ring
numer = self.numer.set_ring(new_ring)
denom = self.denom.set_ring(new_ring)
return new_field.new(numer, denom)
def as_expr(self, *symbols):
return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)
def __eq__(f, g):
if isinstance(g, FracElement) and f.field == g.field:
return f.numer == g.numer and f.denom == g.denom
else:
return f.numer == g and f.denom == f.field.ring.one
def __ne__(f, g):
return not f == g
def __bool__(f):
return bool(f.numer)
def sort_key(self):
return (self.denom.sort_key(), self.numer.sort_key())
def _cmp(f1, f2, op):
if isinstance(f2, f1.field.dtype):
return op(f1.sort_key(), f2.sort_key())
else:
return NotImplemented
def __lt__(f1, f2):
return f1._cmp(f2, lt)
def __le__(f1, f2):
return f1._cmp(f2, le)
def __gt__(f1, f2):
return f1._cmp(f2, gt)
def __ge__(f1, f2):
return f1._cmp(f2, ge)
def __pos__(f):
"""Negate all coefficients in ``f``. """
return f.raw_new(f.numer, f.denom)
def __neg__(f):
"""Negate all coefficients in ``f``. """
return f.raw_new(-f.numer, f.denom)
def _extract_ground(self, element):
domain = self.field.domain
try:
element = domain.convert(element)
except CoercionFailed:
if not domain.is_Field and domain.has_assoc_Field:
ground_field = domain.get_field()
try:
element = ground_field.convert(element)
except CoercionFailed:
pass
else:
return -1, ground_field.numer(element), ground_field.denom(element)
return 0, None, None
else:
return 1, element, None
def __add__(f, g):
"""Add rational functions ``f`` and ``g``. """
field = f.field
if not g:
return f
elif not f:
return g
elif isinstance(g, field.dtype):
if f.denom == g.denom:
return f.new(f.numer + g.numer, f.denom)
else:
return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer + f.denom*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__radd__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__radd__(f)
return f.__radd__(g)
def __radd__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(f.numer + f.denom*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.numer + f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
def __sub__(f, g):
"""Subtract rational functions ``f`` and ``g``. """
field = f.field
if not g:
return f
elif not f:
return -g
elif isinstance(g, field.dtype):
if f.denom == g.denom:
return f.new(f.numer - g.numer, f.denom)
else:
return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer - f.denom*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rsub__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rsub__(f)
op, g_numer, g_denom = f._extract_ground(g)
if op == 1:
return f.new(f.numer - f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)
def __rsub__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(-f.numer + f.denom*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(-f.numer + f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
def __mul__(f, g):
"""Multiply rational functions ``f`` and ``g``. """
field = f.field
if not f or not g:
return field.zero
elif isinstance(g, field.dtype):
return f.new(f.numer*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rmul__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rmul__(f)
return f.__rmul__(g)
def __rmul__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(f.numer*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.numer*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_numer, f.denom*g_denom)
def __truediv__(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
field = f.field
if not g:
raise ZeroDivisionError
elif isinstance(g, field.dtype):
return f.new(f.numer*g.denom, f.denom*g.numer)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer, f.denom*g)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rtruediv__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rtruediv__(f)
op, g_numer, g_denom = f._extract_ground(g)
if op == 1:
return f.new(f.numer, f.denom*g_numer)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom, f.denom*g_numer)
def __rtruediv__(f, c):
if not f:
raise ZeroDivisionError
elif isinstance(c, f.field.ring.dtype):
return f.new(f.denom*c, f.numer)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.denom*g_numer, f.numer)
elif not op:
return NotImplemented
else:
return f.new(f.denom*g_numer, f.numer*g_denom)
def __pow__(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if n >= 0:
return f.raw_new(f.numer**n, f.denom**n)
elif not f:
raise ZeroDivisionError
else:
return f.raw_new(f.denom**-n, f.numer**-n)
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.fields import field
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = field("x,y,z", ZZ)
>>> ((x**2 + y)/(z + 1)).diff(x)
2*x/(z + 1)
"""
x = x.to_poly()
return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)
def __call__(f, *values):
if 0 < len(values) <= f.field.ngens:
return f.evaluate(list(zip(f.field.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))
def evaluate(f, x, a=None):
if isinstance(x, list) and a is None:
x = [ (X.to_poly(), a) for X, a in x ]
numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
else:
x = x.to_poly()
numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)
field = numer.ring.to_field()
return field.new(numer, denom)
def subs(f, x, a=None):
if isinstance(x, list) and a is None:
x = [ (X.to_poly(), a) for X, a in x ]
numer, denom = f.numer.subs(x), f.denom.subs(x)
else:
x = x.to_poly()
numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)
return f.new(numer, denom)
def compose(f, x, a=None):
raise NotImplementedError