paranormal-or-skeptic-ISI-p.../sceptic.ipynb
2022-06-14 23:36:56 +02:00

181 lines
6.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "equal-singles",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import torch\n",
"import csv\n",
"import lzma\n",
"import gensim.downloader\n",
"from nltk import word_tokenize"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "involved-understanding",
"metadata": {},
"outputs": [],
"source": [
"x_train = pd.read_table('in.tsv', sep='\\t', header=None, quoting=3)\n",
"y_train = pd.read_table('expected.tsv', sep='\\t', header=None, quoting=3)\n",
"#x_dev = pd.read_table('dev-0/in.tsv.xz', compression='xz', sep='\\t', header=None, quoting=3)\n",
"#x_test = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\\t', header=None, quoting=3)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "collaborative-cincinnati",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "module 'torch' has no attribute 'nn'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-11c9482004ae>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#print('inicjalizacja modelu')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mclass\u001b[0m \u001b[0mNeuralNetworkModel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mModule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mNeuralNetworkModel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ml01\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m300\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m300\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: module 'torch' has no attribute 'nn'"
]
}
],
"source": [
"#print('inicjalizacja modelu')\n",
"class NeuralNetworkModel(torch.nn.Module):\n",
" def __init__(self):\n",
" super(NeuralNetworkModel, self).__init__()\n",
" self.l01 = torch.nn.Linear(300, 300)\n",
" self.l02 = torch.nn.Linear(300, 1)\n",
"\n",
" def forward(self, x):\n",
" x = self.l01(x)\n",
" x = torch.relu(x)\n",
" x = self.l02(x)\n",
" x = torch.sigmoid(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "hydraulic-business",
"metadata": {},
"outputs": [],
"source": [
"#print('przygotowanie danych')\n",
"\n",
"x_train = x_train.str.lower()\n",
"x_dev = x_dev[0].str.lower()\n",
"x_test = x_test[0].str.lower()\n",
"\n",
"x_train = [word_tokenize(x) for x in x_train]\n",
"x_dev = [word_tokenize(x) for x in x_dev]\n",
"x_test = [word_tokenize(x) for x in x_test]\n",
"\n",
"word2vec = gensim.downloader.load('word2vec-google-news-300')\n",
"x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_train]\n",
"x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_dev]\n",
"x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_test]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "heavy-sandwich",
"metadata": {},
"outputs": [],
"source": [
"#print('trenowanie modelu')\n",
"model = NeuralNetworkModel()\n",
"BATCH_SIZE = 5\n",
"criterion = torch.nn.BCELoss()\n",
"optimizer = torch.optim.SGD(model.parameters(), lr=0.01)\n",
"\n",
"for epoch in range(BATCH_SIZE):\n",
" model.train()\n",
" for i in range(0, y_train.shape[0], BATCH_SIZE):\n",
" X = x_train[i:i + BATCH_SIZE]\n",
" X = torch.tensor(X)\n",
" y = y_train[i:i + BATCH_SIZE]\n",
" y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)\n",
" optimizer.zero_grad()\n",
" outputs = model(X.float())\n",
" loss = criterion(outputs, y)\n",
" loss.backward()\n",
" optimizer.step()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "small-pavilion",
"metadata": {},
"outputs": [],
"source": [
"#print('predykcja wynikow')\n",
"y_dev = []\n",
"y_test = []\n",
"model.eval()\n",
"\n",
"with torch.no_grad():\n",
" for i in range(0, len(x_dev), BATCH_SIZE):\n",
" X = x_dev[i:i + BATCH_SIZE]\n",
" X = torch.tensor(X)\n",
" outputs = model(X.float())\n",
" prediction = (outputs > 0.5)\n",
" y_dev += prediction.tolist()\n",
"\n",
" for i in range(0, len(x_test), BATCH_SIZE):\n",
" X = x_test[i:i + BATCH_SIZE]\n",
" X = torch.tensor(X)\n",
" outputs = model(X.float())\n",
" y = (outputs >= 0.5)\n",
" y_test += prediction.tolist()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "toxic-pendant",
"metadata": {},
"outputs": [],
"source": [
"# print('eksportowanie do plików')\n",
"y_dev = np.asarray(y_dev, dtype=np.int32)\n",
"y_test = np.asarray(y_test, dtype=np.int32)\n",
"y_dev.tofile('./dev-0/out.tsv', sep='\\n')\n",
"y_test.tofile('./test-A/out.tsv', sep='\\n')\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}