paranormal-or-skeptic-ISI-p.../sceptic.ipynb
2022-06-14 23:36:56 +02:00

6.9 KiB
Raw Blame History

import numpy as np
import pandas as pd
import torch
import csv
import lzma
import gensim.downloader
from nltk import word_tokenize
x_train = pd.read_table('in.tsv', sep='\t', header=None, quoting=3)
y_train = pd.read_table('expected.tsv', sep='\t', header=None, quoting=3)
#x_dev = pd.read_table('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
#x_test = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
#print('inicjalizacja modelu')
class NeuralNetworkModel(torch.nn.Module):
    def __init__(self):
        super(NeuralNetworkModel, self).__init__()
        self.l01 = torch.nn.Linear(300, 300)
        self.l02 = torch.nn.Linear(300, 1)

    def forward(self, x):
        x = self.l01(x)
        x = torch.relu(x)
        x = self.l02(x)
        x = torch.sigmoid(x)
        return x
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-5-11c9482004ae> in <module>
      1 #print('inicjalizacja modelu')
----> 2 class NeuralNetworkModel(torch.nn.Module):
      3     def __init__(self):
      4         super(NeuralNetworkModel, self).__init__()
      5         self.l01 = torch.nn.Linear(300, 300)

AttributeError: module 'torch' has no attribute 'nn'
#print('przygotowanie danych')

x_train = x_train.str.lower()
x_dev = x_dev[0].str.lower()
x_test = x_test[0].str.lower()

x_train = [word_tokenize(x) for x in x_train]
x_dev = [word_tokenize(x) for x in x_dev]
x_test = [word_tokenize(x) for x in x_test]

word2vec = gensim.downloader.load('word2vec-google-news-300')
x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_train]
x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_dev]
x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_test]
#print('trenowanie modelu')
model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

for epoch in range(BATCH_SIZE):
    model.train()
    for i in range(0, y_train.shape[0], BATCH_SIZE):
        X = x_train[i:i + BATCH_SIZE]
        X = torch.tensor(X)
        y = y_train[i:i + BATCH_SIZE]
        y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
        optimizer.zero_grad()
        outputs = model(X.float())
        loss = criterion(outputs, y)
        loss.backward()
        optimizer.step()
#print('predykcja wynikow')
y_dev = []
y_test = []
model.eval()

with torch.no_grad():
    for i in range(0, len(x_dev), BATCH_SIZE):
        X = x_dev[i:i + BATCH_SIZE]
        X = torch.tensor(X)
        outputs = model(X.float())
        prediction = (outputs > 0.5)
        y_dev += prediction.tolist()

    for i in range(0, len(x_test), BATCH_SIZE):
        X = x_test[i:i + BATCH_SIZE]
        X = torch.tensor(X)
        outputs = model(X.float())
        y = (outputs >= 0.5)
        y_test += prediction.tolist()
# print('eksportowanie do plików')
y_dev = np.asarray(y_dev, dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
y_dev.tofile('./dev-0/out.tsv', sep='\n')
y_test.tofile('./test-A/out.tsv', sep='\n')