ireland-news-headlines/.ipynb_checkpoints/run-checkpoint.ipynb
2022-06-07 17:37:45 +02:00

143 lines
3.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"id": "5e807436",
"metadata": {},
"outputs": [],
"source": [
"import vowpalwabbit\n",
"import pandas as pd\n",
"import re"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "fa414610",
"metadata": {},
"outputs": [],
"source": [
"def prediction(path_in, path_out, model, categories):\n",
" data = pd.read_csv(path_in, header=None, sep='\\t')\n",
" data = data.drop(1, axis=1)\n",
" data.columns = ['year', 'text']\n",
"\n",
" data['train_input'] = data.apply(lambda row: to_vowpalwabbit(row, categories), axis=1)\n",
"\n",
" with open(path_out, 'w', encoding='utf-8') as file:\n",
" for example in data['train_input']:\n",
" predicted = model.predict(example)\n",
" text_predicted = dict((value, key) for key, value in categories.items()).get(predicted)\n",
" file.write(str(text_predicted) + '\\n')\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "180143ed",
"metadata": {},
"outputs": [],
"source": [
"def to_vowpalwabbit(row, categories):\n",
" text = row['text'].replace('\\n', ' ').lower().strip()\n",
" text = re.sub(\"[^a-zA-Z -']\", '', text)\n",
" text = re.sub(\" +\", ' ', text)\n",
" year = row['year']\n",
" try:\n",
" category = categories[row['category']]\n",
" except KeyError:\n",
" category = ''\n",
"\n",
" vw = f\"{category} | year:{year} text:{text}\\n\"\n",
"\n",
" return vw"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "3f5ddebd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'news': 1, 'sport': 2, 'opinion': 3, 'business': 4, 'culture': 5, 'lifestyle': 6, 'removed': 7}\n"
]
}
],
"source": [
"x_train = pd.read_csv('train/in.tsv', header=None, sep='\\t')\n",
"x_train = x_train.drop(1, axis=1)\n",
"x_train.columns = ['year', 'text']\n",
"\n",
"y_train = pd.read_csv('train/expected.tsv', header=None, sep='\\t')\n",
"y_train.columns = ['category']\n",
"\n",
"data = pd.concat([x_train, y_train], axis=1)\n",
"\n",
"categories = {}\n",
"\n",
"for i, x in enumerate(data['category'].unique()):\n",
" categories[x] = i+1\n",
"\n",
"print(categories)\n",
" \n",
"data['train_input'] = data.apply(lambda row: to_vowpalwabbit(row, categories), axis=1)\n",
"\n",
"model = vowpalwabbit.Workspace('--oaa 7 --learning_rate 0.5')\n",
"\n",
"for example in data['train_input']:\n",
" model.learn(example)\n",
"\n",
"prediction('dev-0/in.tsv', 'dev-0/out.tsv', model, categories)\n",
"prediction('test-A/in.tsv', 'test-A/out.tsv', model, categories)\n",
"prediction('test-B/in.tsv', 'test-B/out.tsv', model, categories)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "5c1c1cb1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook run.ipynb to script\n",
"[NbConvertApp] Writing 1950 bytes to run.py\n"
]
}
],
"source": [
"!jupyter nbconvert --to script run.ipynb"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}