24 KiB
24 KiB
import pandas as pd
import csv
import regex as re
from nltk import trigrams, word_tokenize
from collections import Counter, defaultdict
import nltk
nltk.download('punkt')
[nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Package punkt is already up-to-date!
True
from google.colab import drive
drive.mount('/content/gdrive')
Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).
cd '/content/gdrive/MyDrive/challenging-america-word-gap-prediction/'
/content/gdrive/MyDrive/challenging-america-word-gap-prediction
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
train_data = train_data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data
<ipython-input-4-06713320f790>:1: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) <ipython-input-4-06713320f790>:1: FutureWarning: The warn_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) <ipython-input-4-06713320f790>:2: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) <ipython-input-4-06713320f790>:2: FutureWarning: The warn_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
6 | 7 | 0 | |
---|---|---|---|
0 | came fiom the last place to this\nplace, and t... | said\nit's all squash. The best I could get\ni... | lie |
1 | MB. BOOT'S POLITICAL OBEED\nAttempt to imagine... | \ninto a proper perspective with those\nminor ... | himself |
2 | "Thera were in 1771 only aeventy-nine\n*ub*erl... | all notU\nashore and afloat arc subjects for I... | of |
3 | A gixnl man y nitereRtiiiv dii-clos-\nur«s reg... | ceucju l< d no; <o waste it nud so\nsunk it in... | ably |
4 | Tin: 188UB TV THF BBABBT QABJE\nMr. Schiffs *t... | ascertained w? OCt the COOltS of ibis\nletale ... | j |
... | ... | ... | ... |
432017 | Sam Clendenin bad a fancy for Ui«\nscience of ... | \nSam was arrested.\nThe case excited a great ... | and |
432018 | Wita.htt halting the party ware dilven to the ... | through the alnp the »Uitors laapeeeed tia.»\n... | paasliic |
432019 | It was the last thing that either of\nthem exp... | Agua Negra across the line.\nIt was a grim pla... | for |
432020 | settlement with the department.\nIt is also sh... | \na note of Wood, Dialogue fc Co., for\nc27,im... | for |
432021 | Flour quotations—low extras at 1 R0®2 50;\ncit... | 3214c;do White at 3614c: Mixed Western at\n331... | at |
432022 rows × 3 columns
train_data = train_data[:120000]
train_data['final'] = train_data[6] + train_data[0] + train_data[7]
<ipython-input-6-b31274590998>:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_data['final'] = train_data[6] + train_data[0] + train_data[7]
model = defaultdict(lambda: defaultdict(lambda: 0))
def clean_text(text):
text = text.lower().replace('-\\\\n', '').replace('\\\\n', ' ')
text = re.sub(r'\p{P}', '', text)
return text
for index, row in train_data.iterrows():
text = clean_text(str(row['final']))
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
if w1 and w2 and w3:
model[(w2, w3)][w1] += 1
for w2_w3 in model:
total_count = float(sum(model[w2_w3].values()))
for w1 in model[w2_w3]:
model[w2_w3][w1] /= total_count
def predict_probs(word1, word2):
raw_prediction = dict(model[word1, word2])
prediction = dict(Counter(raw_prediction).most_common(6))
total_prob = 0.0
str_prediction = ''
for word, prob in prediction.items():
total_prob += prob
str_prediction += f'{word}:{prob} '
if total_prob == 0.0:
return 'from:0.2 the:0.2 to:0.2 a:0.1 and:0.1 of:0.1 :0.1'
remaining_prob = 1 - total_prob
if remaining_prob < 0.01:
remaining_prob = 0.01
str_prediction += f':{remaining_prob}'
return str_prediction
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
<ipython-input-12-94466712d0ba>:1: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) <ipython-input-12-94466712d0ba>:1: FutureWarning: The warn_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) <ipython-input-12-94466712d0ba>:2: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) <ipython-input-12-94466712d0ba>:2: FutureWarning: The warn_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
with open('dev-0/out.tsv', 'w') as file:
for index, row in dev_data.iterrows():
text = clean_text(str(row[7]))
words = word_tokenize(text)
if len(words) < 4:
prediction = 'from:0.2 the:0.2 to:0.2 a:0.1 and:0.1 of:0.1 :0.1'
else:
prediction = predict_probs(words[0], words[1])
file.write(prediction + '\n')
with open('test-A/out.tsv', 'w') as file:
for index, row in test_data.iterrows():
text = clean_text(str(row[7]))
words = word_tokenize(text)
if len(words) < 4:
prediction = 'from:0.2 the:0.2 to:0.2 a:0.1 and:0.1 of:0.1 :0.1'
else:
prediction = predict_probs(words[0], words[1])
file.write(prediction + '\n')