118 lines
3.4 KiB
Plaintext
118 lines
3.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import torch \n",
|
|
"from transformers import GPT2LMHeadModel, GPT2Tokenizer\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"torch.__version__, device"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')\n",
|
|
"\n",
|
|
"model = GPT2LMHeadModel.from_pretrained('gpt2-medium')\n",
|
|
"model.to(device)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import lzma \n",
|
|
"\n",
|
|
"\n",
|
|
"def file_iterator(file_path):\n",
|
|
" print(file_path, file_path.endswith(\".xz\"))\n",
|
|
" if file_path.endswith(\".xz\"):\n",
|
|
" with lzma.open(file_path, mode=\"r\") as fp:\n",
|
|
" for line in fp.readlines():\n",
|
|
" yield line.decode(\"utf-8\")#.split(\"\\t\")[7]\n",
|
|
" else:\n",
|
|
" with open(file_path, \"r\", encoding=\"utf-8\") as fp:\n",
|
|
" for line in fp.readlines():\n",
|
|
" yield line\n",
|
|
"\n",
|
|
"def clear_line(line):\n",
|
|
" return line.lower().strip(\"\\n\").replace(\"\\\\n\", \"\")\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"K = 20\n",
|
|
"for file_path in ('dev-0', 'test-A'):\n",
|
|
" print('Working on file from folder:', file_path)\n",
|
|
" data_iterator = file_iterator(f'{file_path}/in.tsv.xz')\n",
|
|
" with open(f'{file_path}/out-tr-dec.tsv', 'w', encoding='utf-8') as fp:\n",
|
|
" for line in data_iterator:\n",
|
|
" # print([(i, part) for i, part in enumerate(line.split('\\t'))])\n",
|
|
" left_context = clear_line(line.split('\\t')[6])\n",
|
|
" # print(left_context)\n",
|
|
" inputs = tokenizer.encode(left_context, return_tensors='pt').to(device)\n",
|
|
" preds = model(inputs)\n",
|
|
" # print('\\n', preds)\n",
|
|
" z_dist = preds[0][0][-1]\n",
|
|
" probability_distances = torch.softmax(preds[0][0][-1], dim=0)\n",
|
|
" top_k = probability_distances.topk(K)\n",
|
|
" # print(top_k)\n",
|
|
" results = [f'{tokenizer.decode([idx])}:{value}' for value, idx in zip(top_k.values, top_k.indices)]\n",
|
|
" # print(results)\n",
|
|
" line_to_write = ' '.join(results) + f' :{1 - torch.sum(top_k.values)}\\n'\n",
|
|
" # print(line_to_write)\n",
|
|
" fp.write(line_to_write)\n",
|
|
" # break\n",
|
|
" # break"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "mj_venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.11"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|