28 lines
1.2 KiB
Python
28 lines
1.2 KiB
Python
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
|
|
|
cols = list(pd.read_csv("avocado.csv", nrows=1))
|
|
# print("###\n", cols, "\n###")
|
|
avocados = pd.read_csv("avocado.csv", usecols=cols[1:])
|
|
avocados.describe(include="all")
|
|
|
|
float_cols = ['AveragePrice','Total Volume','4046','4225','4770','Total Bags','Small Bags','Large Bags','XLarge Bags']
|
|
|
|
avocados.loc[:, float_cols] = StandardScaler().fit_transform(avocados.loc[:, float_cols])
|
|
print(avocados.head())
|
|
|
|
# avocados.loc[:, float_cols] = MinMaxScaler().fit_transform(avocados.loc[:, float_cols])
|
|
# print(avocados.head())
|
|
|
|
avocado_train, avocado_test = train_test_split(avocados, test_size=2000, random_state=3337)
|
|
avocado_train, avocado_valid = train_test_split(avocado_train, test_size=2249, random_state=3337)
|
|
|
|
print("Train\n", avocado_train.describe(include="all"), "\n")
|
|
print("Valid\n", avocado_valid.describe(include="all"), "\n")
|
|
print("Test\n", avocado_test.describe(include="all"))
|
|
|
|
avocado_train.to_csv("avocado.data.train", index=False)
|
|
avocado_valid.to_csv("avocado.data.valid", index=False)
|
|
avocado_test.to_csv("avocado.data.test", index=False)
|