158 lines
4.6 KiB
Python
158 lines
4.6 KiB
Python
|
from gensim import downloader
|
||
|
from gensim.utils import simple_preprocess
|
||
|
import gensim
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import pandas as pd
|
||
|
|
||
|
|
||
|
# Przeklejony kod z jupyter notebook'a
|
||
|
with open("in.tsv", "r") as train_file:
|
||
|
X_train = train_file.readlines()
|
||
|
X_train = [gensim.utils.simple_preprocess(x) for x in X_train]
|
||
|
|
||
|
y_train = pd.read_csv("expected.tsv", header=None)
|
||
|
y_train = y_train.values
|
||
|
|
||
|
|
||
|
with open("dev_in.tsv", "r") as train_file:
|
||
|
X_test = train_file.readlines()
|
||
|
X_test = [gensim.utils.simple_preprocess(x) for x in X_test]
|
||
|
|
||
|
y_test = pd.read_csv("dev_expected.tsv", header=None)
|
||
|
y_test = y_test.values
|
||
|
|
||
|
|
||
|
w2v_model = gensim.models.Word2Vec(X_train, vector_size=100, window=5, min_count=2)
|
||
|
words = set(w2v_model.wv.index_to_key)
|
||
|
X_train_vector = np.array([np.array([w2v_model.wv[i] for i in ls if i in words]) for ls in X_train])
|
||
|
X_test_vector = np.array([np.array([w2v_model.wv[i] for i in ls if i in words]) for ls in X_test])
|
||
|
|
||
|
X_train_vector_average = []
|
||
|
for vector in X_train_vector:
|
||
|
if vector.size:
|
||
|
X_train_vector_average.append(vector.mean(axis=0))
|
||
|
else:
|
||
|
X_train_vector_average.append(np.zeros(100, dtype=float))
|
||
|
|
||
|
X_test_vector_average = []
|
||
|
for vector in X_test_vector:
|
||
|
if vector.size:
|
||
|
X_test_vector_average.append(vector.mean(axis=0))
|
||
|
else:
|
||
|
X_test_vector_average.append(np.zeros(100, dtype=float))
|
||
|
|
||
|
X_train_vector_average = np.array(X_train_vector_average)
|
||
|
X_test_vector_average = np.array(X_test_vector_average)
|
||
|
|
||
|
|
||
|
FEATURES = 100
|
||
|
|
||
|
|
||
|
class NeuralNetworkModel(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super(NeuralNetworkModel, self).__init__()
|
||
|
self.fc1 = torch.nn.Linear(FEATURES,500)
|
||
|
self.fc2 = torch.nn.Linear(500,1)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.fc1(x)
|
||
|
x = torch.relu(x)
|
||
|
x = self.fc2(x)
|
||
|
x = torch.sigmoid(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
nn_model = NeuralNetworkModel()
|
||
|
BATCH_SIZE = 32
|
||
|
criterion = torch.nn.BCELoss()
|
||
|
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
|
||
|
|
||
|
|
||
|
def get_loss_acc(model, X_dataset, Y_dataset):
|
||
|
loss_score = 0
|
||
|
acc_score = 0
|
||
|
items_total = 0
|
||
|
model.eval()
|
||
|
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
|
||
|
X = X_dataset[i:i+BATCH_SIZE]
|
||
|
X = torch.tensor(X.astype(np.float32))
|
||
|
Y = Y_dataset[i:i+BATCH_SIZE]
|
||
|
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||
|
Y_predictions = model(X)
|
||
|
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||
|
items_total += Y.shape[0]
|
||
|
|
||
|
loss = criterion(Y_predictions, Y)
|
||
|
|
||
|
loss_score += loss.item() * Y.shape[0]
|
||
|
return (loss_score / items_total), (acc_score / items_total)
|
||
|
|
||
|
|
||
|
for epoch in range(50):
|
||
|
loss_score = 0
|
||
|
acc_score = 0
|
||
|
items_total = 0
|
||
|
nn_model.train()
|
||
|
for i in range(0, y_train.shape[0] - 42, BATCH_SIZE):
|
||
|
X = X_train_vector_average[i:i+BATCH_SIZE]
|
||
|
X = torch.tensor(X.astype(np.float32))
|
||
|
Y = y_train[i:i+BATCH_SIZE]
|
||
|
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
|
||
|
Y_predictions = nn_model(X)
|
||
|
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
|
||
|
items_total += Y.shape[0]
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
loss = criterion(Y_predictions, Y)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
|
||
|
loss_score += loss.item() * Y.shape[0]
|
||
|
|
||
|
display(epoch)
|
||
|
display(get_loss_acc(nn_model, X_train_vector_average, y_train))
|
||
|
|
||
|
|
||
|
with open("test_in.tsv", "r") as real_test_file:
|
||
|
X_real_test = real_test_file.readlines()
|
||
|
X_real_test = [gensim.utils.simple_preprocess(x) for x in X_real_test]
|
||
|
X_real_test_vector = np.array([np.array([w2v_model.wv[i] for i in ls if i in words]) for ls in X_real_test])
|
||
|
|
||
|
X_real_test_vector_average = []
|
||
|
for vector in X_real_test_vector:
|
||
|
if vector.size:
|
||
|
X_real_test_vector_average.append(vector.mean(axis=0))
|
||
|
else:
|
||
|
X_real_test_vector_average.append(np.zeros(100, dtype=float))
|
||
|
|
||
|
X_real_test_vector_average = np.array(X_real_test_vector_average)
|
||
|
|
||
|
dev_output = []
|
||
|
test_output = []
|
||
|
|
||
|
nn_model.eval()
|
||
|
for i in range(len(X_test_vector_average)):
|
||
|
X = X_test_vector_average[i]
|
||
|
X = torch.tensor(X.astype(np.float32))
|
||
|
Y_predictions = nn_model(X)
|
||
|
if Y_predictions[0] > 0.5:
|
||
|
dev_output.append("1\n")
|
||
|
else:
|
||
|
dev_output.append("0\n")
|
||
|
|
||
|
for i in range(len(X_real_test_vector_average)):
|
||
|
X = X_real_test_vector_average[i]
|
||
|
X = torch.tensor(X.astype(np.float32))
|
||
|
Y_predictions = nn_model(X)
|
||
|
if Y_predictions[0] > 0.5:
|
||
|
test_output.append("1\n")
|
||
|
else:
|
||
|
test_output.append("0\n")
|
||
|
|
||
|
with open("dev_out.tsv", "w") as dev_file:
|
||
|
dev_file.writelines(dev_output)
|
||
|
|
||
|
with open("test_out.tsv", "w") as test_file:
|
||
|
test_file.writelines(test_output)
|